МЕТОДЫ АНАЛИЗА ДАННЫХ

Методы классификации и прогнозирования

Метод деревьев решений (decision trees) - один из наиболее популярных методов решения задач классификации и прогнозирования. Иногда этот метод Data Mining также называют деревьями решающих правил, деревьями классификации и регрессии.

Если зависимая, т.е. целевая переменная принимает дискретные значения, при помощи метода дерева решений решается задача классификации. Если же зависимая переменная принимает непрерывные значения, то дерево решений устанавливает зависимость этой переменной от независимых переменных, т.е. решает задачу численного прогнозирования.

В наиболее простом виде дерево решений - это способ представления правил в иерархической, последовательной структуре. Основа такой структуры - ответы "Да" или "Нет" на ряд вопросов.

На сегодняшний день существует большое число алгоритмов, реализующих деревья решений: CART, С4.5, CHAID, CN2, Newld, ITrule и другие.

Классификационная модель, представленная в виде дерева решений, является интуитивной и упрощает понимание решаемой задачи. Деревья решений дают возможность извлекать правила из базы данных на естественном языке и позволяют создавать классификационные модели в тех областях, где аналитику достаточно сложно формализовать знания.

Алгоритм конструирования дерева решений не требует от пользователя выбора входных атрибутов (независимых переменных). На вход алгоритма можно подавать все существующие атрибуты, алгоритм сам выберет наиболее значимые среди них, и только они будут использованы для построения дерева. В сравнении, например, с нейронными сетями, это значительно облегчает пользователю работу, поскольку в нейронных сетях выбор количества входных атрибутов существенно влияет на время обучения.

Точность моделей, созданных при помощи деревьев решений, сопоставима с другими методами построения классификационных моделей (статистические методы, нейронные сети). На построение классификационных моделей при помощи алгоритмов конструирования деревьев решений требуется значительно меньше времени, чем, например, на обучение нейронных сетей.

Многие статистические методы являются параметрическими, и пользователь должен заранее владеть определенной информацией, например, знать вид модели, иметь гипотезу о виде зависимости между переменными, предполагать, какой вид распределения имеют данные. Деревья решений, в отличие от таких методов, строят непараметрические модели. Таким образом, деревья решений способны решать такие задачи Data Mining, в которых отсутствует априорная информация о виде зависимости между исследуемыми данными.

Процесс конструирования дерева решений

Алгоритмы конструирования деревьев решений состоят из этапов "построение" или " создание " дерева (tree building) и " сокращение " дерева (tree pruning). В ходе создания дерева решаются вопросы выбора критерия расщепления и остановки обучения (если это предусмотрено алгоритмом). В ходе этапа сокращения дерева решается вопрос отсечения некоторых его ветвей.

В процессе построения дерева, чтобы его размеры не стали чрезмерно большими, используют специальные процедуры, которые позволяют создавать оптимальные деревья, так называемые деревья "подходящих размеров" (Breiman,1984).

Какой размер дерева может считаться оптимальным? Дерево должно быть достаточно сложным, чтобы учитывать информацию из исследуемого набора данных, но одновременно оно должно быть достаточно простым. Другими словами, дерево должно использовать информацию, улучшающую качество модели, и игнорировать ту информацию, которая ее не улучшает.

Метод опорных векторов - (Support Vector Machine - SVM) относится к группе граничных методов. Она определяет классы при помощи границ областей. С его помощью решаются задачи бинарной классификации.

В основе метода лежит понятие плоскостей решений. Плоскость (plane) решения разделяет объекты с разной классовой принадлежностью.

Цель метода опорных векторов - найти плоскость, разделяющую два множества объектов. Метод отыскивает образцы, находящиеся на границах между двумя классами, т.е. опорные векторы. Опорными векторами называются объекты множества, лежащие на границах областей. Классификация считается хорошей, если область между границами пуста.

Метод "ближайшего соседа" или системы рассуждений на основе аналогичных случае ("nearest neighbour") относится к классу методов, работа которых основывается на хранении данных в памяти для сравнения с новыми элементами. При появлении новой записи для прогнозирования находятся отклонения между этой записью и подобными наборами данных, и наиболее подобная (или ближний сосед) идентифицируется.

Например, при рассмотрении нового клиента банка его атрибуты сравниваются со всеми существующими клиентами данного банка (доход, возраст и т.д.). Множество "ближайших соседей" потенциального клиента банка выбирается на основании ближайшего значения дохода, возраста и т.д.

При таком подходе используется термин "k-ближайший сосед" ("k-nearest neighbour"). Термин означает, что выбирается к "верхних" (ближайших) соседей для их рассмотрения в качестве множества "ближайших соседей". Поскольку не всегда удобно хранить все данные, иногда хранится только множество "типичных" случаев. В таком случае используемый метод называют рассуждением по аналогии (Case Based Reasoning, CBR), рассуждением на основе аналогичных случаев, рассуждением по прецедентам.

Прецедент - это описание ситуации в сочетании с подробным указанием действий, предпринимаемых в дайной ситуации. Таким образом, вывод, основанный на прецедентах, представляет собой такой метод анализа данных, который делает заключения относительно данной ситуации по результатам поиска аналогий, хранящихся в базе прецедентов.

Данный метод по своей сути относится к категории "обучение без учителя", т.е. является "самообучающейся" технологией, благодаря чему рабочие характеристики каждой базы прецедентов с течением времени и накоплением примеров улучшаются. Разработка баз прецедентов по конкретной предметной области происходит на естественном для человека языке, следовательно, может быть выполнена наиболее опытными сотрудниками компании - экспертами или аналитиками, работающими в данной предметной области.

Однако это не означает, что CBR-системы самостоятельно могут принимать решения. Последнее всегда остается за человеком, данный метод лишь предлагает возможные варианты решения и указывает на самый "разумный" с ее точки зрения.

Байесовская классификация (байесовское моделирование, байесовская статистика, метод байесовских сетей) - изначально использовалась для формализации знаний экспертов в экспертных системах, сейчас байесовская классификация также применяется в качестве одного из методов Data Mining.

Нейронные сети (Neural Networks) - могут быть представлены направленным графом с взвешенными связями, в котором искусственные нейроны являются вершинами, а синаптические связи - дугами. Среди областей применения нейронных сетей - автоматизация процессов распознавания образов, прогнозирование, адаптивное управление, создание экспертных систем, организация ассоциативной памяти, обработка аналоговых и цифровых сигналов, синтез и идентификация электронных цепей и систем.

С помощью нейронных сетей можно, например, предсказывать объемы продаж изделий, показатели биржевого рынка, выполнять распознавание сигналов, конструировать самообучающиеся системы. Модели нейронных сетей могут быть программного и аппаратного исполнения.

 
Посмотреть оригинал
< Пред   СОДЕРЖАНИЕ   ОРИГИНАЛ   След >