Цифровое представление звуковых сигналов

Аналого-цифровое преобразование. Преобразование аналогового звукового сигнала в цифровой включает в себя несколько этапов. Сначала аналоговый звуковой сигнал подается на аналоговый фильтр, который ограничивает полосу частот сигнала и устраняет помехи и шумы. Затем из аналогового сигнала с помощью схемы выборки/хранения выделяются отсчеты: с определенной периодичностью осуществляется запоминание мгновенного уровня аналогового сигнала. Далее отсчеты поступают в аналого-цифровой преобразователь (АЦП), который преобразует мгновенное значение каждого отсчета в цифровой код или число. Полученная последовательность бит цифрового кода, собственно, и является звуковым сигналом в цифровой форме. В результате преобразования непрерывный аналоговый звуковой сигнал превращается в цифровой (дискретный как по времени, так и по величине). Для примера на рисунке 1.3.2 показана структурная схема канала цифровой записи звука.

Главную роль в процессе преобразования сигнала из аналоговой формы в цифровую играет АЦП (Analog/Digital Converter - ADC). Обратный процесс преобразование цифрового звукового сигнала в аналоговый реализуется с помощью цифро-аналогового преобразователя - ЦАП (Digital/ Analog

Converter - DAC).

Входной аналоговый сигнал

Дискретный

по времени и Дискретный Цифровой Цифровой

Непрерывный непрерывный по времени и кодирован- сигнал

по времени по значению по значению ный сигнал (канальный

сигнал сигнал сигнал (код) код)

Ограничение полосы частот

Дискре- Кванто-

тизация вание|

Кодиро- Перекодирова- Передающий

вание ние (защита от канал,

ошибок, устройство

согласование с записи и каналом, обработки

вспомогатель- сигнала

ный код)

Рисунок 1.3.2 - Обобщенная структурная схема канала цифровой записи звука

Дискретизация. Важнейшим этапом аналого-цифрового преобразования является дискретизация аналогового сигнала. Вместо термина «дискретизация» в технической литературе иногда употребляют термин «выборка», а в литературе, посвященной обработке звука используется понятие - «сэмплирование». С английского языка слово Sample дословно переводится как «образец». Поэтому это слово в мультимедийной и профессиональной терминологии имеет несколько значений для обозначения разных типов «образцов». Чаще всего сэмплом называют промежуток времени между двумя измерениями аналогового сигнала. Кроме промежутка времени сэмплом называют последовательность цифровых данных, полученных в результате аналого-цифрового преобразования, а сам процесс преобразования

- сэмплированием. В иностранных журнальных публикациях такой термин как частота дискретизации вы не встретите, но в изобилии столкнетесь с частотой сэмплирования, хотя эти термины обозначают одно и то же. Термин «дискретизация» более привычен для применения в России, поэтому далее будет использоваться термин «дискретизация».

По определению, дискретизация - это процесс взятия отсчетов непрерывного во времени сигнала в равноотстоящих друг от друга по времени точках. Иными словами, в процессе дискретизации измеряется и запоминается уровень аналогового сигнала. Через заданный интервал времени, который называется интервалом дискретизации, процедура повторяется. Для качественного преобразования аналогового сигнала в цифровой необходимо производить достаточно большое количество отсчетов даже в течение одного периода изменения аналогового сигнала, другими словами, значение частоты дискретизации не может быть произвольным.

Значение частоты дискретизации фактически определяет ширину полосы частот сигнала, который может быть записан с помощью используемой цифровой системы. Ширина этой полосы не может быть больше половины значения частоты дискретизации, как определяет теорема отсчетов (Котельникова-Найквиста). Эта теорема имеет важнейшее значение в технике записи и передачи звука в цифровой форме. Теорема гласит: сигнал, спектр частот которого занимает область от FMHH до FMAKC (низкочастотный звуковой сигнал), может быть полностью представлен своими дискретными отсчетами с интервалом Т если Tf) не превышает 7/2FMAKC. Другими словами, частота дискретизации ґд = 1/Тд в процессе преобразования должна быть, как минимум, вдвое больше наивысшей частоты звукового сигнала FMakc> потому, что спектр сигнала, преобразованного с помощью АЦП в цифровую форму, имеет периодический характер.

В соответствии с теоремой Фурье сигнал любой формы может быть представлен в виде суммы простейших синусоидальных колебаний разной частоты и амплитуды. По окончании аналого-цифрового преобразования звуковой сигнал, представленный в цифровой форме, содержит, кроме низкочастотных, соответствующих исходному аналоговому сигналу, еще и высокочастотные компоненты (рисунок 1.3.3). Эти компоненты есть повторение низкочастотного спектра сигнала в виде боковых полос с центрами в точках, кратных частоте дискретизации (fd, 2fd, 3fd, 4fd и т. д.).

Участок наложения спектров

Рисунок 1.3.3 - Перекрытие спектров сигнала при дискретизации

Если уменьшить частоту дискретизации, то произойдет наложение, т.е. перекрытие, низкочастотной части спектра и боковой полосы с центром в точке. Наложение спектров приведет к появлению новых спектральных составляющих в сигнале и, следовательно, к невозможности его правильного восстановления.

Классический пример наложения спектров, когда при просмотре кинофильма кажется, что колесо движущейся кареты крутится со скоростью, не соответствующей скорости движения кареты, или даже в обратную сторону. Возникновение этого эффекта обусловлено тем, что скорость смены кадров, т.е. частота дискретизации изображения, мала по сравнению с угловой

скоростью вращения колеса.

Чтобы при записи звукового сигнала избежать наложения спектров, перед АЦП устанавливается фильтр низких частот (ФНЧ), подавляющий все частоты, лежащие выше частоты дискретизации. При этом желательно, чтобы фронты АЧХ этого фильтра были как можно круче.

Если учесть, что человек способен слышать звуковые колебания, частота которых находится в диапазоне от 16^20 Гц до 20 кГц, и с позиций теоремы отсчетов взглянуть на требования к частотным характеристикам высококачественной звукотехники, например, проигрывателей аудио компакт-дисков, становится ясно, что частота дискретизации исходного звукового сигнала должна составлять не менее 40 кГц. Реально для подобных систем частота дискретизации выбирается не менее 44,1 кГц. Стандартное значение частоты дискретизации большинства звуковых карт составляет 44,1 и 48,0кГц.

Результатом дискретизации является дискретный во времени сигнал, представляющий собой последовательность отсчетов - мгновенных значений уровня аналогового сигнала. Чем выше частота дискретизации, тем более точно будет восстановлен звуковой сигнал.

Процедура дискретизации технически реализуется с помощью устройства выборки/хранения. В качестве запоминающего элемента обычно используют конденсатор, заряжающийся до уровня напряжения входного сигнала. При этом потенциал заряда конденсатора соответствует мгновенному значению напряжения сигнала. Напряжение на конденсаторе сохраняется неизменным в течении некоторого отрезка времени, называемого временем хранения. В идеальном случае взятие отсчета должно происходить мгновенно, реально же длительность этого процесса составляет приблизительно 1мкс.

Квантование. После дискретизации происходит второй этап аналого-цифрового преобразования - квантование отсчетов. В процессе квантования производится измерение мгновенных значений уровня сигнала, полученных в каждом отсчете, причем осуществляется оно с точностью, которая напрямую зависит от количества разрядов, используемых для записи значения уровня.

Если, задав длину N-кодового слова, записать значения уровня сигнала с помощью двоичных чисел, то количество возможных значений будет равно 2n. Столько же может быть и уровней квантования. Например, если значение амплитуды отсчета представляется 16-разрядным кодовым словом, то максимальное количество градаций уровня сигнала (уровней квантования) будет равно 65536 (216). При 8-разрядном представлении будем иметь 256 (28) градаций уровня сигнала.

Шумы квантования. Преобразование сигнала из аналоговой формы в цифровую можно произвести только с какой-то степенью точности, при этом, чем выше частота дискретизации и разрядность АЦП, тем точнее происходит преобразование.

Искажения сигнала, возникающие в процессе квантования отсчетов, влекут за собой потерю информации, которую при обратном цифро-аналоговом преобразовании в ходе воспроизведения записанного звукового сигнала ликвидировать или уменьшить практически невозможно.

Например, если преобразовать линейно нарастающий по напряжению аналоговый сигнал, то дискретный и восстановленный сигналы будут различаться на величину напряжения ошибки UOUI (рисунок 1.3.4). При записи звука зависимость ошибки от времени гораздо сложнее, а ее спектр подобен спектру белого шума и занимает частотный диапазон от нуля до частоты дискретизации. Появление ошибок квантования при записи звукового сигнала в цифровой форме эквивалентно добавлению к восстановленному сигналу некоторого шума. Поэтому ошибки квантования называются шумом квантования. Шум квантования можно рассматривать и как специфические искажения сигнала, особенно заметные при малых его уровнях. Уровень шума квантования обычно измеряется в присутствии сигнала как уровень (в децибелах) относительно максимального значения сигнала. Чем меньше этот уровень, тем выше качество звука. Достижимый уровень шума определяется разрядностью квантования и частотой дискретизации.

Ошибки квантования

Рисунок 1.3.4 - Ошибки квантования

Затраты памяти на запись звука в цифровой форме. Зная разрядность АЦП, а точнее, количество разрядов, используемых для записи звукового сигнала в цифровой форме, можно получить некоторые интересные цифры.

Например, если умножить число разрядов кодового слова на частоту дискретизации сигнала, выраженную в герцах, то получим скорость передачи данных, которую должен обеспечивать цифровой канал запи-си/воспроизведения звука. Если полученную скорость передачи данных умножить на общую длительность звукового сигнала в секундах, получим объем памяти на магнитном носителе, например, на жестком диске, который потребуется для хранения звуковых данных. В случае записи стереосигнала, когда запись идет по двум (левому и правому) стереоканалам, скорость передачи данных и необходимый объем памяти удваиваются.

Передискретизация (оверсэмплинг). Для того чтобы осуществить аналого-цифровое преобразование с высоким качеством, необходимо выполнить ряд условий.

Прежде всего, при оцифровке звукового сигнала следует использовать как можно более высокую частоту дискретизации: чем выше будет частота дискретизации, тем более качественно будет восстановлен исходный сигнал. К сожалению, пропорционально увеличению частоты дискретизации возрастает поток цифровых данных в канале звукозаписи, а также объем памяти, необходимой для хранения звукового сигнала в цифровой форме.

Другое условие аналого-цифрового преобразования заключается в том, что перед дискретизацией необходимо ограничить спектр входного сигнала с помощью фильтра низкой частоты (ФНЧ). Он должен удалить все гармоники с частотами, лежащими выше частоты дискретизации, и тем самым предотвратить наложение спектров.

В современных АЦП проблема фильтрации с целью устранения высокочастотных компонент спектра решается с помощью передискретизации - дискретизации па повышенной частоте. Термину передискретизация в зарубежной технической литературе соответствует термин оверсэмплинг.

При передискретизации (оверсэмплинге) диапазон частот входного аналогового звукового сигнала ограничивается с помощью ФНЧ низкого порядка (обычно 3-5-го), имеющего линейную фазовую характеристику и практически не искажающего импульсный сигнал. Частота среза фильтра выбирается значительно выше частоты полезного сигнала и составляет 25-ЗОкГц. В результате исключаются фазовые искажения, характерные для аналоговых фильтров высокого порядка, и подавление полезных сигналов высших частот. Отфильтрованный сигнал, имеющий ограниченный по частоте спектр, подвергается дискретизации на повышенной частоте, что исключает наложение и искажение спектра.

Далее дискретные отсчеты сигнала преобразуются в последовательность чисел с помощью АЦП, причем поток цифровых данных включает и нежелательные высокочастотные компоненты спектра.

Полученные цифровые данные подвергаются цифровой фильтрации. Цифровой фильтр высокого порядка с крутым срезом частотной характеристики изготовить гораздо проще. Причем, благодаря линейности фазовой характеристики цифрового фильтра, фазовые искажения сигнала будут отсутствовать. После цифрового фильтра сигнал будет иметь спектр, корректно ограниченный по частоте.

После цифровой фильтрации частота дискретизации сигнала понижается до удвоенного значения наивысшей полезной частотной составляющей путем удаления «избыточных» отсчетов.

В результате передискретизации (оверсэмплинга) нежелательные высокочастотные составляющие будут ликвидированы, в то время как высокочастотные составляющие исходного звукового сигнала будут сохранены.

Цифро-аналоговое преобразование. Для воспроизведения звукового сигнала, записанного в цифровой форме, необходимо преобразовать его в аналоговую форму, то есть осуществить цифро-аналоговое преобразование сигнала (рисунок 1.3.5).

Цифро-аналоговое преобразование производится в два этапа.

На первом этапе из потока цифровых данных с помощью цифро-аналогового преобразователя выделяют отсчеты сигнала, следующие с частотой дискретизации. На втором этапе из дискретных отсчетов формируется путем сглаживания (интерполяции) непрерывный аналоговый сигнал. Эта операция равносильна фильтрации сигнала идеальным фильтром низкой частоты, который подавляет периодические составляющие спектра дискретизированного сигнала.

Дискретный Дискретный

по времени и по значению сигнал с ошибками

по времени и по значению сигнал без ошибок

Дискретный по значению сигнал

Непрерывный по времени сигнал

Выходной аналоговый сигнал

Канальный і Декодер Сглаживание і і Фильтрация 1 декодер 1---------------------1 1----------

ЦАП (включая схему Восстанавливающий

выборки и хранения) НЧ-фильтр

Рисунок 1.3.5 - Обобщенная схема преобразования цифрового сигнала в аналоговый

Как и в АЦП, в ЦАП широко применяется передискретизация (оверсэмплинг), поскольку существует проблема создания

восстанавливающих (интерполирующих) аналоговых фильтров.

Сразу после первого этапа цифро-аналогового преобразования сигнал представляет собой серию узких импульсов, имеющих многочисленные высокочастотные спектральные компоненты. На аналоговый фильтр в этом случае возлагается задача полностью пропустить сигнал нужного частотного диапазона, например, 024 кГц, и как можно сильнее подавить ненужные высокочастотные компоненты. Аналоговому фильтру выполнить такие противоречивые требования не под силу.

Полученный в результате цифро-аналогового преобразования звуковой сигнал, как правило, попадает в микшер и через линейный выход направляется в акустическую систему, в которой колебания напряжения электрического сигнала преобразуются в колебания звукового давления.

 
Посмотреть оригинал
< Пред   СОДЕРЖАНИЕ   ОРИГИНАЛ   След >