Общая характеристика мышечной деятельности

Специфическими элементами мышечного волокна являются миофибриллы (тонкие нити, которые тянутся от одного поперечно-полосатого волокна мышцы к другому), системы продольных трубочек - саркоплазматическая сеть (саркоплазматический ретикулум) и система поперечных трубочек - Т-система (она представляет собой выпячивание поверхностной мембраны мышечного волокна внутрь его) [38,44].

Диаметр миофибрилл составляет 0,5-2 мкм. Поперечная исчерченность образована чередующимися светлыми и темными дисками; оба диска образуют саркомер - функциональную единицу сократительного аппарата мышечного волокна. Внутри каждого саркомера тонкие нити не доходят друг до друга, т.е. концы их не соединяются, оставляя пространство, называемое Н-зона. Между двумя рядами тонких миофибрилл находятся толстые миофибриллы, занимающие среднее положение в сарко- мере. Они скреплены сетевидной структурой, представленной темной полоской - М-линией. Толстые нити состоят из белка миозина, а тонкие - из актина. Между актиновыми и миозиновы- ми нитями расположены поперечные мостики [44, 59].

В основе мышечного сокращения лежит перемещение нитей актина относительно нитей миозина (рис. 4). Нити актина двигаются, как по туннелю, между миозиновыми фибриллами, за счет чего укорачивается ширина //-полоски. Такое вклинивание актиновых нитей между миозиновыми приводит к уменьшению длины мышцы (изотоническое сокращение). При изометрическом сокращении одни саркомеры сокращаются, другие растягиваются, что обеспечивает отсутствие изменения длины волокна. В процессе скольжения нитей каждый мостик может сцепиться с одним актиновым участком, продвинуть нить актина на какое- то расстояние, затем отсоединиться от него и войти в контакт со следующим мостиком.

Механизм мышечного сокращения

Рис. 4. Механизм мышечного сокращения:

А-диск - нити миозина; 1-диск - нити актина;

Z-линия - линия тонкой мембраны, сквозь которую проходят миофибриллы; М-линия - сетевидная структура соединения миофибрилл

Сокращение мышечных волокон происходит со значительным потреблением энергии [38, 44, 59]. Энергию для перемещения нитей дает аденозинтрифосфорная кислота (АТФ) при ее расщеплении в присутствии ионов кальция (Са2 ). Ферментом, расщепляющим АТФ в мышцах, является миозин, активность которого резко возрастает при соединении с актином и при образовании белка актомиозина в присутствии Са2+. В состоянии покоя сокращение мышцы не возникает, это связано с тем, что Са2+ находится внутри саркоплазматического ретикулума. Сокращение мышечных волокон и мышц возникает по причине прихода нервных импульсов из ЦНС, и в нервно-мышечном синапсе происходит выделение ацетилхолина, который вызывает деполяризацию мембраны мышечного волокна. Возникающий вследствие этого импульс распространяется по мембранам саркоплазматического ретикулума. Изменение потенциала мембраны сопровождается увеличением ее проницаемости для Са2+ и выходом его в межфибриллярное пространство. Кальций способствует образованию актомиозина, под влиянием которого расщепляется АТФ. Освобождаемая при этом энергия используется для скольжения нитей. Эта теория получила название теории «скользящих нитей». Вслед за распадом АТФ происходит расщепление ряда других, богатых энергией фосфатных соединений. Освобождаемая энергия в значительной степени используется для восстановления уровня АТФ. Распад фосфатных соединений осуществляется без доступа кислорода, поэтому эта фаза получила название «анаэробная фаза». Энергия высвобождается в результате следующей реакции:

Расщепление АТФ происходит с большой скоростью. АТФ дефосфорилируется благодаря ферментативному действию миозина и превращается в аденозиндифосфориую кислоту (АДФ), а затем при потере еще одной группы фосфорной кислоты - в аде- ниловую кислоту. Энергия расходуется для сокращения мышц. Так как АТФ расходуется, то длительная мышечная работа невозможна без восстановления (ресинтеза) АТФ.

Ресинтез АТФ происходит за счет энергии, которая освобождается при втором, более медленном процессе дефосфорилирования креатинфосфорной кислоты на креатин и фосфорную кислоту:

За счет этой энергии могут быть выполнены интенсивные, но не продолжительные нагрузки - от 20-30 с до 1-2 мин (бег на 100 м). При более длительных нагрузках происходит расщепление углеводов:

В результате этой реакции происходит распад глюкозы и расщепление глюкозофосфата до молочной кислоты с выделением энергии, которая идет на ресинтез АТФ и креатинфосфата.

Для дальнейших реакций необходимо наличие кислорода - начинается аэробная фаза, во время которой происходит распад молочной кислоты до углекислого газа (С02) и воды (Н20):

Освободившаяся энергия идет на ресинтез молочной кислоты до глюкозы и гликогена, а также - на восстановление АТФ и креа- тинфосфорной кислоты.

Запас АТФ в скелетных мышцах обеспечивает всего лишь 10 одиночных сокращений. При максимальном мышечном сокращении имеющихся в тканях запасов АТФ достаточно только на одну секунду. Энергия креатинфосфата, концентрация которого в 3-8 раз больше, чем АТФ, может поддержать такое сокращение в течение еще нескольких секунд. При максимальном сокращении на протяжении нескольких секунд абсолютно необходим анаэробный гликолиз, в котором используются запасы гликогена. Ресинтез гликогена из образующейся при этом молочной кислоты возможен лишь в аэробных условиях, поэтому при работе мышц так необходим кислород. При его отсутствии нарушается ресинтез гликогена и запасы углеводов быстро истощаются. Процесс расслабления мышцы связан с обратным поступлением Са2+ в саркоплазматический ретикулум [59].

Таким образом, механизм мышечного сокращения сопряжен с расходованием энергетических ресурсов. Истощение данных ресурсов приводит к проявлению ряда специфических физиологических состояний организма, о чем речь пойдет далее.

  • ? Контрольные вопросы и задания
  • 1. Расскажите о строении сократительного аппарата мышц.
  • 2. Раскройте механизм мышечного сокращения.
  • 3. Дайте общую характеристику механизмам потребления энергии при мышечном сокращении.
 
Посмотреть оригинал
< Пред   СОДЕРЖАНИЕ   ОРИГИНАЛ   След >