Показатели качества поверхности

Качество поверхности деталей характеризуется микро- и макрогеометрией поверхности, волнистостью, структурой, упрочнением и остаточными напряжениями. Глубина поверхностного слоя и качество поверхности зависят от основного материала, вида обработки, основных параметров инструмента, режима обработки и рода смазочно-охлаждающей жидкости.

Структура поверхностного слоя шлифованной детали из

Рис. 2.13. Структура поверхностного слоя шлифованной детали из

углеродистой стали

Поверхностный слой неоднороден по строению (рис. 2.13). Граничный слой 1 состоит из адсорбированной пленки газов, влаги и смазочноохлаждающей жидкости, которую можно удалить лишь нагревом детали в вакууме. Слой 2 — деформированный, сильно раздробленный металл с искаженной решеткой кристаллов и с обезуглероженными под действием высоких температур при шлифовании участками; в нем находятся окислы и нитриды, пустоты, надрывы и трещины. Слой 3 состоит из зерен, сильно деформированных под действием давления шлифовального круга и тангенциальных сил при шлифовании; в нем содержится структурносвободный цементит, образовавшийся под действием высоких температур. Слой 4 — металл с исходной структурой. При более тонкой обработке (абразивными брусками, лентами и т.д.) слой 1 не изменяется по толщине, а слои 2 и 3 уменьшаются соответственно меньшим давлению и температуре поверхности при обработке.

У полированного металла самый верхний слой состоит из мельчайших кристаллических образований, многие из которых не имеют законченной решетки и представляют собой как бы обломки правильных кристаллических образований. Такое строение позволило считать этот слой аморфным. Под ним находится слой очень мелких кристаллов, ориентированных в направлении полирования. Далее следует переходная к исходной структуре прослойка слабо наклепанных кристаллов без выраженной текстуры.

Если исключить адсорбированную пленку, то поверхностный слой обработанной инструментом поверхности состоит из наружного очень тонкого слоя, сильно разрушенных кристаллических зерен и наклепанного слоя четкой кристаллической структуры.

Упрочнение поверхностного слоя при обработке можно оценить по изменению микротвердости по сравнению с исходной. Микротвердость падает по мере удаления от поверхности детали, причем более резко по толщине слоя с раздробленной структурой. Прочные и хрупкие металлы менее склонны к упрочнению, чем малопрочные и вязкие, к тому же температура при резании высокопрочных металлов значительно выше и сильнее сказывается фактор разупрочнения. Наклеп металла под выступами неровностей обычно больше, чем под впадинами. Поверхностный слой в зависимости от указанных выше обстоятельств имеет толщину при точении 0,25—2,0 мм, при шлифовании 12—75 мкм, при тонком шлифовании 2—25 мкм, при полировании 0,2 мкм. Следует иметь в виду, что шлифовочные прижоги могут достигать глубины 5 мм.

Поверхностный слой может находиться в напряженном состоянии. Остаточные напряжения в нем при механической обработке могут достигать 560—1000 МПа и быть как сжимающими, так и растягивающими. Шлифовочные трещины возникают под действием высоких внутренних напряжений растяжения. Остаточные напряжения растяжения снижают предел выносливости детали.

Микроскопическая неоднородность физико-механических свойств характерна для всякого твердого тела. В металлах она обусловлена анизотропией кристаллов. Если стравить обработанный поверхностный слой, то образовавшаяся новая поверхность будет неоднородна по свойствам, поскольку кристаллические зерна различно ориентированы к поверхности. Обработанная поверхность в связи с особенностями ее образования отличается сравнительно большей неоднородностью как по химической активности, так и по физико-механическим свойствам. Кроме того, она имеет ультрамикроскопические дефекты в виде трещин и пустот. Хотя подобные дефекты структуры возникают в процессе образования всей массы металла, но количество их в поверхностном слое возрастает в результате механических и тепловых воздействий при обработке.

Дефекты структуры могут иметь и атомный характер. Атомы кристаллической решетки металла непрерывно совершают беспорядочные колебания около положения равновесия с тем большим размахом, чем выше температура. Размах некоторых атомов становится таким значительным, что они покидают свои места в решетке, нарушая тем самым кристаллический порядок. При любой температуре всегда имеется некоторое количество атомов, покинувших свои устойчивые положения в решетке, оставив в ней пустые места и ослабив этим прочность твердого тела. Образование дефектов в структуре металла может быть вызвано также посторонними примесями.

Система дефектов — слабых мест поверхности детали — является основой, на которой, начиная с самых малых деформаций, развиваются микротрещины. Вследствие наличия дефектов на поверхности естественно ожидать, что разрушение поверхности при трении будет происходить именно в этих местах, т.е. процесс изнашивания будет носить избирательный характер. По мере изнашивания поверхности слабые места будут возникать вновь.

 
Посмотреть оригинал
< Пред   СОДЕРЖАНИЕ   ОРИГИНАЛ   След >