Итальянская технология утилизация отходов птицеводства и животноводства

Технология промышленного производства искусственного гумуса из органических отходов птицеводства - куриного помета базируется на современных теоретических представлениях о структуре и динамике природного носителя почвенного плодородия - гумусе. Согласно этим представлениям действующим началом гумуса, определяющим его высокую биологическую активность и способность к производству, обеспечивается макроциклическими комплексами органических природных веществ, главным образом гуминовых кислот, с ионами переходных металлов (Fe, Си, Мп....) и щелочноземельных элементов (Са, Mg....). Эти фрагменты, связываясь своими активными группами (-OFI, - СООН, NFF, ..с комплексообразующими ионами, образуют сплошную («сшитую») лигандную оболочку, способную в строго определенных условиях сбалансированного протонно-апротонного катализа наращиваться, вовлекая в этот процесс новые атомы металлов, которые образуют кластерную цепочку внутри прочной гидрофобной лигандной оболочки. Таким образом, формируются достаточно прочные трубчатые макромолекулы. Такие комплексы, включающие в себя полный набор питательных веществ и конституционную воду, обеспечивают растения всеми необходимыми веществами для интенсивного роста и развития.

Существенным отличием предлагаемого способа получения гумусоподобного удобрения от известных аналогов являются:

  • - многократное ускорение образования макрокомплексов в условиях действия на субстрат электрических полей специальной формы при его интенсивном диспергировании и гомогенизации;
  • - многократное (до 10 раз) снижение удельных энергозатрат на получение каждой тонны гранулированного органического удобрения.

Технологический процесс получения в Комплексе искусственного гумуса начинается, практически, с заполнения предварительно подготовленным (очищенным от инородных включений - щебня, металлических предметов и др.) куриного помета бункера - питателя (дозатора), заполнения (при необходимости) второго бункера - питателя компонентами-носителями ионов, далее их частичным измельчением и перемешиванием в дезинтеграторе - смесителе до получения пластичной однородной массы для подачи последней в реактор, где и должен происходить процесс образования искусственного гумуса

1. Исходное сырье.

Вариант 1: Сырье - птичий помет из накопителя - отстойника с исходной влажностью - 45 - 85 % (в случае уборки птичников гидросмывом) добывается земснарядом (или фекальным насосом).

На входных сетках заборников производится очистка сырья от грубых посторонних включений и металла.

Вариант 2: Сырье - птичий помет влажностью до 75% из птичников (в случае уборки птичников с использованием скребковых транспортеров) направляется в бункер накопитель комплекса.

При перемещении сырья в реакторе происходит измельчение, смешивание сырья, предварительная сушка и гумизация, ускоренная до 10 раз в сравнении с обычным электролизом, обеззараживание органических масс, структурирование воды, превращение частиц вредных веществ и газов (меркаптанов, аммиака, сероводорода и др.) в полезные вещества за счет воздействия на каждую молекулу по всему объему вещества электромагнитного катализатора, температуры и водорода.

На выходе из реактора хлор и фтор связываются в экологически безопасные вещества и полезные вещества, например, CaF. Образовавшиеся газы подаются в блок электроочистки, где соединения серы окончательно разлагаются на элементарные вещества, а сера осаждается на холодных стенках поддона.

Реактор выдерживает давление внутри корпуса не менее 5 атм;

Реактор обеспечивает:

  • - измельчение сырья и реагентов до размера частиц не более 20 мкм;
  • - получение гомогенной смеси;
  • - получение биологически активных металлоорганических соединений переходных металлов (Fe, Си, Мп....) и щелочно-земельных элементов (Са, Mg) с фрагментами натуральных органических соединений;
  • - дегидратацию удобрения до влажности не более 30 %;
  • - возможность замены электродной системы по мере ее износа за время не более 10 минут.

Чистый гумус из зоны комплексирования реактора поступает в зону сушки реактора (дегидратации). В выпускаемых промышленностью дегидраторах удаление воды происходит за счет ее испарения. Это энергоемкий процесс - на испарение 1 тонны воды затрачивается до 1000 кВт час электроэнергии.

В установленном на комплексе дегидраторе удаление до 40 % структурированной воды производится в виде тумана, при 50 - 80 °С без испарения. Это достигнуто за счет применения электрического катализатора. При таком процессе энергии на удаление этой части воды затрачивается до 10 раз меньше, т.е. 100 кВт час электроэнергии.

Температурный режим и дальнейшая сушка продукта производится за счет использования водорода, вредных газов и веществ, образовавшихся в реакторе, в качестве сушильного агента. При этом вредные вещества превращаются в экологически безопасные.

Система газоотведения. Функциональное назначение: отсос паров воды и газов и их очистку (утилизацию) перед выбросом в атмосферу. Система газоотведения комплекса обеспечивает:

  • - предварительную очистку и дезактивацию газов, выделяющихся в процессе работы реактора (аммиака, водорода, кислорода, меркаптанов, азота и др.) и доведение выбросов до требований ПДК с проверкой эффективности очистки;
  • - конденсацию очищенных паров воды с получением дистиллята;
  • - сигнализацию утечки метана и водорода из системы;

Система водоотведения обеспечивает:

  • - удаление избыточной воды в процессе дегидратации продукта;
  • - отвод воды в стандартные отстойники;
  • - возможность использования получаемой жидкой фракции на основе активированной воды в сельском хозяйстве.

Линия грануляции выходного продукта:

-обеспечивает гранулирование модифицированного куриного помета с размерами гранул не более 2 - 2,5 мм;

Линия расфасовки и упаковки. Сырье (куриный помет), предварительно очищенный от инородных включений, доставляется в бункер - питатель. В бункер - питатель компонентов (используются при необходимости корректировки показателей качества искусственного гумуса) доставляются компоненты. Далее из бункеров - питателей сырье и компоненты (при необходимости) с помощью шнековых транспортеров подаются в блок предварительной подготовки субстрата - дезинтегратор - смеситель. Здесь производится измельчение материалов, гомогенизация и получение пластифицированной биомассы, которая далее перемещается с помощью шнекового транспортера в реактор.

В реакторе, разделенном на функциональные зоны, осуществляется ряд технологических операций над материалом - куриным пометом, приводящих к модификации его параметров. В первой зоне происходит интенсивное измельчение материалов до частиц с размерами единиц микрон, тщательное смешение до получения гомогенной массы. В этой же зоне осуществляются процессы комплексирования фрагментов органики с переходными и щелочноземельными металлами под действием приложенного к системе электродов, размещенных в этой зоне реактора, электрического напряжения с заданными параметрами. Протекание физико - химических процессов в данной зоне реактора сопровождается выделением газообразной фазы, содержащей пары активированной влаги, водорода, меркаптанов, аммиака, сероводорода и др., которые здесь же за счет воздействия на каждую молекулу по всему заданными параметрами. Протекание физико - химических процессов в данной зоне реактора сопровождается выделением газообразной фазы, содержащей пары активированной влаги, водорода, меркаптанов, аммиака, сероводорода и др., которые здесь же за счет воздействия на каждую молекулу по всему объему вещества электромагнитного катализатора, температуры и водорода превращаются большей частью в полезные вещества. Образовавшиеся газы подаются в блок газоотве- дения и электроочистки, где они разлагаются на элементарные вещества, а сера осаждается на холодных стенках поддона.

Из первой зоны реактора обработанная биомасса перемещается в зону дегидратации (обезвоживания до определенных параметров) и далее подается принудительно на устройство гранулирования, в котором оно окончательно и досушивается до требуемой влажности.

Далее уже обеззараженные (полностью подавляется патогенная микро - и макрофлора, семена сорняков теряют всхожесть, устраняется запах) гранулированные удобрения подаются либо в линию расфасовки в мешкообразную тару для последующего складирования и реализации. Жидкая фракция, образовавшаяся в процессе производства гранулированных удобрений, с помощью системы водоотведения направляется в емкости - отстойники. Жидкая фракция должна пройти химический анализ на предмет ее дальнейшего использования. Осажденная из газообразной фазы структурированная вода может найти достойное применение, как в сельскохозяйственной практике, так и в других сферах [103].

Представляет интерес и способ получения удобрения из органических отходов животноводства, птицеводства и растениеводства [104]. Способ включает: смешение в однородную биомассу навоза, птичьего помета и измельченных растительных отходов; разделение биомассы на жидкую и твердую фракции самовытеком жидкости из биомассы и сбором ее в накопителе; раздельное обеззараживание жидкой и твердой фракций биотермической ферментацией. Жидкую фракцию обеззараживают анаэробной ферментацией в сборнике при температуре 35 - 40 °С, в течение 2-3 суток. Твердую фракцию обеззараживают аэробной ферментацией в открытых буртах, при температуре 65- ТО °С. Недостатки способа: повышенная загазованность рабочей зоны токсичными газообразными продуктами ферментации, в частности, фосфинами, сероводородом, меркаптанами, аммиаком; зараженность рабочей зоны термоустойчивыми патогенными микроорганизмами. Известно, что термоустойчивые микроорганизмы не погибают даже при температуре выше 100 °С.

При приготовлении удобрения из органических отходов животноводства, птицеводства и растениеводства, навоз и птичий помет смешивают с измельченными растительными отходами в однородную биомассу. Полученную биомассу разделяют на жидкую и твердую фракции сепарацией Жидкую фракцию обеззараживают и детоксицируют обработкой в электролизере с нерастворимыми электродами, и после обработки засевают штаммами микроорганизмов аэробной и/или анаэробной ферментацией. Твердую фракцию обеззараживают и детоксицируют озоно-воздушной смесью и ультрафиолетовым излучением. После предварительной обработки жидкую фракцию приливают к твердой фракции. Увлажненную биомассу загружают в барабан, засевают штаммами аэробной и/или анаэробной микрофлоры, перемешивают и, подогревом теплым воздухом, в ней активируют ферментативные процессы. После активации ферментативного процесса в биомассе, ее выгружают в бурты.

Предлагаемый способ приготовления удобрения из органических отходов имеет следующие отличительные признаки от, описанных в литературе, способов:

  • - разделение биомассы на фракции осуществляется сепарированием, что значительно ускоряет процесс разделения биомассы на твердую и жидкую фракции и, тем самым, уменьшает загазованность рабочей зоны токсичными выделениями продуктов анаэробной ферментации исходной биомассы;
  • - обеззараживание с одновременной детоксикацией жидкой фракции осуществляется в электролизере с нерастворимыми электродами;

Под действием межэлектродного разряда и промежуточных продуктов электролиза: радикалов водорода, кислорода, гидроксильных групп, - идет разрушение защитной оболочки микроорганизмов, необратимая деструкция ферментных, белковых систем и ДНК. Эффективность подавления патогенной микрофлоры в рабочей зоне электролизера до 99,9 %.

Детоксикация (обезвреживание) водорастворимых продуктов анаэробной ферментации (естественного гниения) навоза и птичьего помета: фосфина (РНЗ), фосфинов (R-PH2), сероводорода (H2S), меркаптанов (R-SH), аммиака (NH3), происходит в процессе окисления этих продуктов в прианодном пространстве электролизера и идет до образования фосфорной, серной, азотной кислот и их производных, соответственно, по уравнениям:

где R - алкил, арил, гетерил.

Образующиеся в ходе окисления кислоты нейтрализуются основаниями жидкой фракции, в частности, с аммиаком с образованием нетоксичных средних, кислых, основных солей, которые входят в минеральную составляющую органических удобрений.

- перед биотермическим ферментативным обеззараживанием твердую фракцию обрабатывают озоно-воздушной смесью и ультрафиолетовым излучением с целью её обеззараживания и детоксикации.

Как и жидкая фракция, твердая фракция, содержащая навоз и птичий помет, - это концентрированный источник патогенных микроорганизмов и газообразных токсичных веществ. Применение озона для обеззараживания и детоксикации твердой фракции определяется следующей целесообразностью

С одной стороны - озон - самый сильный после фтора и экологически чистый окислитель. Бактерицидное и противовирусное действие озона распространяется на все виды патогенной микрофлоры. Эффективность антимикробных, фунгицидных, спороцидных свойств озона, при прямом контакте и оптимальной концентрации, составляет 99,99 %.

Непосредственные причины гибели бактерий и вирусов при действии озона - локальные повреждения плазматической мембраны микроорганизмов и изменение их внутриклеточного содержимого: окисление белков, нарушение клеточных механизмов.

С другой стороны - озон, как энергичный окислитель химических соединений, окисляет токсичные продукты естественного гниения: фосфин, фосфины, сероводород, меркаптаны, аммиак до фосфорной, сернистой, серной, азотной кислот и их производных, соответственно, по следующим уравнениям:

В количественном отношении только аммиак окисляется незначительно из-за его высокого окислительно-восстановительного потенциала.

Образовавшиеся в ходе окисления кислоты дают с избытком аммиака нетоксичные соли аммония.

Поскольку обеззараживающая эффективность озона определяется непосредственным контактом озона с объектом, в частности, с поверхностью частиц биомассы, то, с целью повышения степени обеззараживания биомассы, в устройстве обеззараживания предусматривается дополнительная обработка ее ультрафиолетовым излучением.

Наибольшим бактерицидным действием обладают ультрафиолетовые лучи с длиной волны 205-310 нм. Более чувствительны к воздействию УФ излучения (УФИ) вирусы и бактерии в вегетативной форме (палочки, кокки). Менее чувствительны грибы и простейшие микроорганизмы. Наибольшей устойчивостью обладают споровые формы бактерий и грибов.

Гибель микроорганизмов на поверхностях, прямо расположенных в 2 м от импульсного источника УФИ, через 15 минут достигает 99,99 % при дозе 50 м. Дж/см . При этом на поверхностях, повернутых к источнику на 45 - 90 градусов, гибель микробов варьирует уже в пределах 57,6 - 99,99 %.

Обеззараживающий эффект ультрафиолетового излучения, в основном, обусловлен фотохимическими реакциями, в результате которых происходят необратимые повреждения ДНК, РНК и клеточных мембран, что вызывает гибель микроорганизмов. Ультрафиолетовые лучи распространяются по прямой и действуют преимущественно на нуклеиновые кислоты, оказывая на микроорганизмы как летальное, так и мутагенное воздействие. Бактерицидными свойствами обладают только те лучи, которые адсорбируются протоплазмой микроклетки.

Для обеспечения максимального эффекта обеззараживания поверхности частиц твердой фракции, они непрерывно переворачиваются. Последнее достигается перемещением твердой фракции по технологической линии с помощью шнека - в случае обработки озоно-воздушной смесью и вибростола - в случае ультрафиолетового облучения.

- после обеззараживания и детоксикации, непосредственно перед укладкой в бурты, твердая фракция засевается необходимыми штаммами ферментов, увлажняется обезвреженной жидкой фракцией и подвергается ферментативной активации в биобарабане при 45 - 55° С.

Использование предлагаемого способа приготовления удобрения из органических отходов уменьшает выброс токсичных газообразных продуктов и патогенных микроорганизмов в окружающую среду, обеспечивает санитарно-гигиенические условия труда в производственных помещениях и создает условия для ускоренного получения экологически чистого органического удобрения из отходов животноводства, птицеводства и растительного материала.

Предлагаемое техническое решение может использоваться в сельском хозяйстве для ускоренного приготовления органических удобрений из отходов животноводства, птицеводства и растениеводства.

Способ приготовления удобрения из органических отходов осуществляется с помощью устройства, которое включает в себя: смеситель биомассы 1, сепаратор 2, емкость-накопитель жидкой фракции 3, электролизер 4, емкость для обезвреженной жидкой фракции 5, засевной бак 6, ленточный транспортер твердой фракции 7, измельчитель 8, шнековое устройство с кожухом 9, озонатор 10, вибростол 11, ультрафиолетовые лампы 12, шнековый конвейер 13, ороситель 14, биобарабан 15, воздуходувку 16, ленточный транспортер - укладчик 17, бурты 18.

Навоз, птичий помет (в виде пульпы) и измельченные растительные отходы подаются в смеситель. Органические отходы в виде пульпы перемешиваются до однородной биомассы и перекачиваются в сепаратор для разделения биомассы на жидкую и твердую фракции. Жидкая фракция с соотношением фосфора, азота и калия - 1,4: 1,0: 1,6 и содержанием коллоидных взвешенных веществ не менее 1 %, подается в усреднительную емкость-накопитель, далее - в электролизер с нерастворимыми электродами. Электрохимическую обработку жидкой фракции ведут при плотности тока на электродах А/дм“, площади элек- тродов 0,5 м на 1 м /час обрабатываемой жидкости, при расстоянии между электродами 30 мм, время обработки жидкости 5-10 мин. Обезвреженную жидкую и детоксицированную фракцию собирают в емкости и далее перекачивают в засевной бак, где засевают штаммами микроорганизмов аэробной или анаэробной ферментации и возвращают в твердую фракцию (шнек ) через оросительное устройство. Избыток обезвреженной жидкости используется для орошения сельскохозяйственных культур.

Отсепарированная твердая фракция: пористая, рассыпчатая биомасса с низкой адгезией, из сепаратора подается на ленточный транспортер и в измельчитель, с выходными параметрами измельчения - 5 - 25 мм.

Измельченная биомасса подается в шнековое устройство, где осуществляется обеззараживание и детоксикация твердой фракции путем прокачки озоно-воздушной смеси из озонатора через шнековое устройство. Соотношение озона в озоно-воздушной смеси и сероводорода и меркаптанов в биогазовых выделениях твердой фазы составляет 2 - 4:1, соответственно. Степень обеззараживания и детоксикации твердой фракции регулируется концентрацией озона в озоновоздушной смеси, скоростью её прокачки через шнековое устройство и временем контакта. При выходе из шнекового устройства твердая фракция попадает на наклонный вибростол с закрепленными над ним ультрафиолетовыми лампами, где производится дополнительное обеззараживание биомассы от патогенной микрофлоры. Технические характеристики ультрафиолетовых излучателей: диапазон длин волн от 185 до 400 нм, длительность импульса излучения от 1 мкс до 10 мкс, плотность импульсной мощности излучения до 120 квт/м .

Дальнейшее обеззараживание твердой фракции осуществляется посредством биотермической ферментации. С этой целью твердую фракцию перемещают с вибростола на шнековый конвейер. При движении в конвейере, она обогащается через ороситель штаммами ферментации из засевного бака и увлажняется жидкой фракцией и выгружается в биобарабан. В биобарабане увлажненная твердая фракция перемещается и перемешивается, подогревается до температуры 45-55 °С теплым воздухом из воздуходувки до активации ферментативного процесса. После биотермической ферментации в биобарабане, масса укладывается в бурты для дозревания на 45 - 60 суток.

 
Посмотреть оригинал
< Пред   СОДЕРЖАНИЕ   ОРИГИНАЛ   След >