Кристаллическое строение металлов

Кристаллическое строение металлов изучается различными методами. Их можно разделить на две группы. К первой принадлежат методы изучения внутреннего строения кристаллов, ко второй — методы изучения их внешних форм.

Внутреннее строение кристаллов изучается, главным образом, с помощью рентгеноструктурного анализа (см. § 50). По его данным для всех металлов установлены типы и параметры кристаллических решеток.

Кристаллические решетки металлов могут быть различных типов. Однако для большинства металлов характерны три типа решеток: объ- емноцентрированная кубическая (Li, Na, К, V, Cr, Fe[1], Pb, W и др.), гранецентрированная кубическая (Al, Ca, Fe[2], Ni, Cu, Ag, Au и др.), гексагональная (Be, Mg, Cd, Ti, Co, Zn и др.). На рис. 139 показаны элементарные ячейки (см. § 50) решеток этих типов.

Размеры, форму и взаимное расположение кристаллов в металлах изучают металлографическими методами. Наиболее полную оценку структуры металла в этом отношении дает микроскопический анализ его шлифа. Из испытуемого металла вырезают образец, и его плоскость шлифуют, полируют и протравливают специальным раствором (травителем). В результате травления выявляется структура образца, которую рассматривают или фотографируют с помощью металлографического микроскопа.

Кристаллы металлов обычно имеют небольшие размеры. Поэтому любое металлическое изделие состоит из большого числа кристаллов. Такая структура называется поликристаллической. При кристаллизации металла из расплавленного состояния растущие кристаллы мешают друг другу принять правильную форму. Поэтому кристаллы по- ликристаллического тела имеют неправильную форму и в отличие от правильно ограненных кристаллов называются кристаллитами или зернами. Зерна различаются между собой пространственной ориентацией их кристаллических решеток (рис. 140).

При травлении шлифа границы зерен разъедаются сильнее; они становятся углубленными. Свет, падая на них, рассеивается, и в поле зрения микроскопа границы зерен представляются темными, а сами зерна — светлыми (рис. 141).

Специальными способами получают куски металлов, представляющие собой один кристалл — монокристаллы. Монокристаллы металлов, а также неметаллов изготовляют для научных исследований и для специальных отраслей техники (полупроводники, лазеры и др.).

Внутренняя структура зерна металла не является строго правильной. Металлам, как и всем реальным кристаллам (см. § 51), присущи дефекты структуры. При этом многие свойства металлов сильно зави-

Основные типы кристаллических решеток металлов

Рис. 139. Основные типы кристаллических решеток металлов: а — объемноцентрированная кубическая; б — гранецентрированная кубическая; в — гексагональная

Схема различной ориентации

Рис. 140. Схема различной ориентации

кристаллических решеток в поликристаллическом теле сят от характера и от числа имеющихся в металле дефектов. Так, в процессах диффузии важную роль играют вакансии. Эти процессы протекают, например, при насыщении в горячем состоянии поверхностного слоя металлического изделия другими элементами для защиты от коррозии или для придания поверхности изделия твердости. Проникновение атомов постороннего элемента в глубь металла происходит в основном по местам вакансий. C повышением температуры число вакансий возрастает, что служит одной из причин ускорения процесса диффузии.

Микроструктура металла (стократное увеличение)

Рис. 141. Микроструктура металла (стократное увеличение)

Некоторые механические свойства металлов зависят от количества дислокаций и от их способности к перемещению по металлу. Так, высокая пластичность металлов объясняется перемещением дислокаций.

Схема пластического сдвига в кристалле металла изображена на рис. 142. Внешняя сила P первоначально вызывает небольшое смещение атомов вертикальных рядов 1,2,3 (рис. 142, a). C увеличением силы P это смещение возрастает, и ряд атомов 1 (выше плоскости скольжения АЛ) проскакивает нейтральное положение между 1' и 2'. При этом ряд 2 превращается в лишнюю плоскость и образует дислокацию (рис. 142, б), знакомую нам по рис. 62. В результате образования дислокации решетка искажается по обе стороны плоскости скольжения. Поэтому далее уже при небольшой силе P вертикальные ряды атомов над плоскостью скольжения будут смещаться — дислокация, подобно эстафете, будет последовательно передаваться рядам 3,4 и далее.

В какой-то момент будет иметь место положение, представленное на рис. 142, в. В итоге же дислокация выйдет на поверхность и исчезнет, как показано на рис. 142, г.

Таким образом, пластический сдвиг в реальном металле происходит не путем одновременного сдвига всей атомной плоскости, что потребовало бы затраты гораздо большей энергии, а путем перемещения дислокаций вдоль плоскости скольжения.

Металлические кристаллы, лишенные дислокаций, обладают весьма высокой прочностью. Такими кристаллами являются выращиваемые в особых условиях нитевидные кристаллы или «усы». Их прочность во много раз превышает прочность обычных образцов соответствующего металла и близка к теоретической величине, вычисленной для кристаллической решетки металла, не имеющей дефектов структуры.

C другой стороны, появление в металле очень большого числа различно ориентированных дислокаций также приводит к повышению прочности, так как при этом кристаллическая структура металла сильно искажает-

Дислокационная схема пластического сдвига

Рис. 142. Дислокационная схема пластического сдвига

ся и перемещение дислокаций затрудняется. В этом состоит объяснение явления наклепа — упрочнения металла под действием пластической деформации. При нагревании сильно деформированного металла искажения его структуры, вызванные сдвигами, постепенно снимаются — металл возвращается в структурно более устойчивое состояние; его пластичность возрастает, а твердость и прочность снижаются.

  • [1] При температурах до 911 и от 1392 0C до плавления.
  • [2] При температурах от 911 до 1392 °С.
 
Посмотреть оригинал
< Пред   СОДЕРЖАНИЕ   ОРИГИНАЛ   След >