Меню
Главная
Авторизация/Регистрация
 
Главная arrow Техника
Посмотреть оригинал

КОНСТРУКЦИОННЫЕ ПОРОШКОВЫЕ МАТЕРИАЛЫ

Порошковыми называют материалы, изготовляемые путем прессования металлических порошков в изделия необходимой формы и размеров и последующего спекания сформованных изделий в вакууме или защитной атмосфере при температуре 0,750,8ТПлх. Различают пористые и компактные порошковые материалы.

Пористыми называют материалы, в которых после окончательной обработки сохраняется 10—30 % остаточной пористости. Эти сплавы используют главным образом для изготовления антифрикционных деталей (подшипников, втулок) и фильтров.

Антифрикционные порошковые сплавы имеют низкий коэффициент трения, легко прирабатываются, выдерживают значительные нагрузки и обладают хорошей износостойкостью.

Подшипники из порошковых сплавов могут работать без принудительного смазывания за счет «выпотевания» масла, находящегося в порах.

Подшипники изготовляют из сплавов железа и 1—7 % графита (ЖГр 1, ЖГрЗ, ЖГр7) и бронзографита, содержащего 8—10 % Sn и 2—4 % графита (БрОГрЮ—2, БрОГр8—4 и др.).

Структура металлической основы железографитовых материалов должна быть перлитной, с массовой долей связанного углерода ~1,0 %. Такая структура допускает наиболее высокие скорости и нагрузки при наименьшем износе подшипников. Добавка к железографитовым материалам серы (0,8—1,0 %) или сульфидов (3,5—4,0 %), образующих сульфидные пленки на трущихся поверхностях, улучшает прирабатываемость, уменьшает износ и прихватываемость сопряженных деталей.

Коэффициент трения железографита по стали при смазке 0,07—0,09. Подшипники из железографита применяют при допустимой нагрузке не более 1000—1500 МПа и максимальной температуре 100‘—200 °С. Коэффициент трения бронзографита по стали без смазывания 0,04—0,07 и со смазыванием 0,05—0,007. Допустимая нагрузка 400—500 МПа и рабочая температура не выше 200—250 °С. [1]

Механические свойства железографита! ав = 180-&300 МПа и твердость 60—120 НВ, а бронзографита» ав = 30-ь50 МПа, твердость 25—50 НВ.

Спеченные материалы на основе железа и меди используют и для фрикционных изделий (дисков, сегментов) в тормозных узлах. Фрикционные изделия должны иметь высокий коэффициент трения, достаточную механическую прочность и хорошее сопротивление износу. Для повышения коэффициента трения в состав фрикционных материалов вводят карбиды кремния, бора, тугоплавкие оксиды и т. д. Компонентами твердого смазочного материала служат графит, свинец, сульфиды и др.

Коэффициент трения по чугуну (трение без смазочного материала) для материала на железной основе составляет 0,18—0,40, а на медной основе — 0,17—0,25.

Фрикционные сплавы на медной основе применяют для условий жидкостного трения в паре с закаленными стальными дега- лями (сегменты, диски сцепления и т. д.) при давлении до 400 МПа и скорости скольжения до 40 м/с с максимальной температурой 300—350 °С. Типичным фрикционным материалом на основе меди является сплав МК5, содержащий 4 % Fe, 7 % графита, 8 % РЬ, 9 % Sn, 0—2 % Ni.

Для работы в условиях трения без смазочного материала (деталей тормозов самолетов, тормозных накладок тракторов, автомобилей, дорожных машин, экскаваторов и т. д.) применяют материалы на железной основе. Наибольшее применение получил материал ФМК-11 (15 % Си, 9 % графита, 3 % асбеста, 3 % SiOa и 6 % барита). Фрикционные материалы изготовляют в виде тонких секторов (сегментов, полос) и крепят на стальной основе (для упрочнения).

Широко применяют порошковые материалы для фильтрующих изделий. Фильтры в виде втулок, труб, пластин из порошков Ni, Fe, Ti, А1, коррозионно-стойкой стали, бронзы и других материалов с пористостью 45—50 % (размер пор 2—20 мкм) используют для очистки жидкостей и газов от твердых примесей.

В электротехнике и радиотехнике применяют порошковые магниты на основе Fe—Ni—Al-сплава (типа алнико) и др. Свойства порошковых магнитов нередко выше свойств литых магнитов.

Большое применение в машинах для контактной сварки, приборах связи получили контакты из порошковых материалов. Для этой цели применяют псевдосплавы тугоплавких металлов (W и Мо) с медью (МВ20, МВ40, МВ60, МВ80), серебром (СМЗО, СМ60, СМ80, СВЗО, СВ50, СВ85 и др.) или о оксидом кадмия (ОК8, ОК12, ОК15) и др. Контакты отличаются высокой прочностью, электропроводимостью и электроэрозионной стойкостью. Токосъемники (щетки) изготовляют из порошков меди (или серебра) с графитом (углем).

Все больше порошковая металлургия применяется для изготовления специальных сплавов! жаропрочных на никелевой основе, дисперсионно-упрочненных материалов на основе Ni, Al, Ti и Сг. Методом порошковой металлургии получают различные материалы на основе карбидов W, Мо и Zr.

Спеченные алюминиевые сплавы (САС) применяют тогда, когда путем литья и обработки давлением трудно получить соответствующий сплав. Изготовляют САС с особыми физическими свойствами. САС содержат большое количество легирующих элементов (например, САС1: 25—30 % Si, 5—7 % Ni, остальное А1). Из САС1 делают детали приборов, работающих в паре со сталью при температуре 20—200 СС, которые требуют сочетания низкого коэффициента линейного расширения и малой теплопроводности.

В оптико-механических и других приборах применяют высокопрочные порошковые сплавы системы А1—Zn—Mg—Си (ПВ90, ПВ90Т1 и др.). Эти сплавы обладают высокими механическими свойствами, хорошей обрабатываемостью резанием и релаксационной стойкостью. Изделия из этих сплавов подвергают термической обработке по режимам Т1 и Т2 (см. с. 396).

Применяют гранулированные специальные сплавы с высоким содержанием Fe, Ni, Со, Mn, Cr, Zr, Ti, V и других элементов, мало растворимых в твердом алюминии. Гранулы — литые частицы диаметром от десятых долей до нескольких миллиметров. При литье центробежным способом капли жидкого металла охлаждаются в воде со скоростью 104— 10е °С/с, что позволяет получить сильно пересыщенные твердые растворы переходных элементов в алюминии. При последующих технологических нагревах (400—450 °С) происходит распад твердого раствора с образованием дисперсных фаз, упрочняющих сплав.

Все более широкое применение получают компактные материалы (1—3 % пористости) из порошков углеродистой и легированной стали, бронз, латуней, сплавов алюминия и титана для изготовления всевозможных шестерен, кулачков, кранов, корпусов подшипников, деталей автоматических передач и других деталей машин.

Изготовляют большое количество порошковых конструкционных (СП10-1 ... СП10-4, СПЗО-1 ... СПЗО-4, СПЗОДЗ-2, СП60Н2Д2-2, СПЗОНЗМ-2, СП40Х-2, СП45ХЗ-2 и др.), мартенсит- но-стареющих (СПН12К5М5Г4ТЮ, СПН12Х5МЗТ и др.), коррозионно-стойких (СПХ17Н2, СПХ18Н15, СПХ23Н28 и др.) и других сталей. В маркировке сталей добавочно введены буква «С», которая указывает класс материала — сталь, и буква «П» — порошковая. Цифра после дефиса показывает плотность стали в процентах. Стали подвергают термической обработке [2].

Свойства сталей, полученных из порошков после термической обработки, во многих случаях уступают свойствам сталей, полученных обычными металлургическими методами. Механические свойства порошковой бтали зависят от плотности и содержания кислорода. При пористости более 3 % заметно уменьшаются ав, do,a* KCU, а порог хладноломкости /60 повышается даже при увеличении пористости более 2 %. С повышением содержания кислорода более 0,01 % снижается KCU и повышается /50.

Поэтому рекомендовать порошковую технологию для высоко- нагруженных стальных деталей нельзя. Вследствие более низких механических свойств, высокой стоимости исходного материала и энергоемкости процесса спекания порошковая конструкционная сталь может быть использована только для изготовления мало нагружаемых изделий, главным образом сложной формы.

Сплавы на основе цветных металлов (АЛП-2, АЛПД-2-4, АЛПЖ12-4, БрПБ—2, БрПОЮ—2, БрПОЮЦЗ—3, ЛП58Г2-2 и др.) нашли широкое применение в приборостроении электротехнической промышленности и электронной технике. В марке сплавов первые буквы указывают класс материала («Ал» — алюминий, «Б» — берилий, «Бр» — бронза, «Л» — латунь и т. д.), буква «П» — порошковый сплав и число после дефиса —плотность материала в процентах. Буквы («Д» —• медь, «Ж» — железо, «Г» — марганец и др.) и цифры в марке указывают состав сплава. Так же как обычные сплавы, порошковые сплавы на основе цветных металлов обладают высокой теплопроводностью и электропроводимостью, коррозионной стойкостью, немагнитны, хорошо обрабатываются резанием и давлением.

Порошковая металлургия позволяет увеличить коэффициент использования металла и повысить производительность труда.

Экономическая эффективность достигается благодаря сокращению или полному исключению механической обработки. Вследствие высокой стоимости пресс-форм изготовление деталей машин методами порошковой металлургии эффективно только в массовоц производстве.

Применение порошковых материалов рекомендуется при изготовлении деталей простой симметричной формы (цилиндрические, конические, зубчатые), малых массы и размеров. Конструктивные формы детали не должны содержать отверстий под углом к оси заготовки, выемок, внутренних полостей и выступов. Конструкция и форма детали должны позволять равномерно заполнять полость пресс-формы порошками, их уплотнение, распределение напряжений и температуры при прессовании и удалении изделия из пресс-формы.

Вопросы для самопроверки

  • 1. Каковы достоинства и недостатки порошковой металлургии?
  • 2.. Какие Вы знаете порошковые антифрикционные и фрикционные материалы?
  • 3. Как влияет пористость на механические свойства порошковых материалов?
  • 4. Опишите свойства, технологию обработки я применение конструкционных порошковых материалов.

  • [1] Порошковая металлургия.
  • [2] Более подробно см.: Порошковая металлургия: Справочник. Киев: Наукова думка, 1985. 624 с.
 
Посмотреть оригинал
< Предыдущая   СОДЕРЖАНИЕ   Следующая >
 

Популярные страницы