Меню
Главная
Авторизация/Регистрация
 
Главная arrow Техника
Посмотреть оригинал

КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ С МЕТАЛЛИЧЕСКОЙ МАТРИЦЕЙ

Композиционные материалы состоят из металлической матрицы [1] (чаще А1, Mg, Ni и их сплавы), упрочненной высокопрочными волокнами (волокнистые материалы) или тонкодисперсными тугоплавкими частицами, не растворяющимися в основном металле {дисперсно-упрочненные материалы). Металлическая матрица связывает волокна (дисперсные частицы) в единое целое. Волокно (дисперсные частицы) плюс связка (матрица), составляющие ту

%. Схема структуры (а) и армирования непрерывными волокнами (б) композиционных материалов

Рис. 1%. Схема структуры (а) и армирования непрерывными волокнами (б) композиционных материалов:

1 — зернистый (дисперсно-упрочненный) материал (l/d — I): 2 — дискретный волокнистый композиционный материал; 3 — непрерывно волокнистый композиционный материал; 4 — непрерывная укладка волокон; 5 — двухмерная укладка волокон; 6,7 — объемная укладка волокон

или иную композицию, получили название композиционные материалы (рис. 196).

Волокнистые композиционные материалы.

На рис. 196 приведены схемы армирования волокнистых композиционных материалов. Композиционные материалы с волокнистым наполнителем (упрочнителем) по механизму армирующего действия делят на дискретные, в которых отношение длины волокна к диаметру l/d « 10-тЛ03, и с непрерывным волокном, в которых l/d = со. Дискретные волокна располагаются в матрице хаотично. Диаметр волокон от долей до сотен микрометров. Чем больше отношение длины к диаметру волокна, тем выше степень упрочнения.

Часто композиционный материал представляет собой слоистую структуру, в которой каждый слой армирован большим числом параллельных непрерывных волокон. Каждый слой можно армировать также непрерывными волокнами, сотканными в ткань, которая представляет собой исходную форму, по ширине и длине соответствующую конечному материалу. Нередко волокна сплетают в трехмерные структуры.

Композиционные материалы отличаются от обычных сплавов более высокими значениями временного сопротивления и предела выносливости (на 50—100 %), модуля упругости, коэффициента жесткости (Ely) и пониженной склонностью к трещинообразова- нию. Применение композиционных материалов повышает жесткость конструкции при одновременном снижении ее металлоемкости.

Таблица 44

Механические свойства композиционных материалов на металлической основе

Материал

<*в

0-1

Е, ГПа

°в/*

E/V

МПа

Бор—алюминий (ВКА—1А)

1300

600

220

500

84,6

Бор—магний (ВКМ— 1)

1300

500

220

590

100

Алюминий—углерод (ВКУ—1)

900

300

220

450

100

Алюминий—сталь (КАС—1А)

1700

350

ПО

370

24,40

Никель—вольфрам (ВКН—1)

700

150

--'

Прочность композиционных (волокнистых) материалов определяется свойствами волокон; матрица в основном должна перераспределять напряжения между армирующими элементами. Поэтому прочность и модуль упругости волокон должны быть значительно больше, чем прочность и модуль упругости матрицы. Жесткие армирующие волокна воспринимают напряжения, возникающие в композиции при нагружении, придают ей прочность и жесткость в направлении ориентации волокон.

Для упрочнения алюминия, магния и их сплавов применяют борные (ов = 2500-*-3500 МПа, Е = 38ч-420 ГПа) и углеродные (ств = 1400-г-3500 МПа, Е 160-ь450 ГПа) волокна, а также волокна из тугоплавких соединений (карбидов, нитридов, боридов и оксидов), имеющих высокие прочность и модуль упругости. Так, волокна карбида кремния диаметром 100 мкм имеют ств = = 2500-*т3500 МПа, Е = 450 ГПа. Нередко используют в качестве волокон проволоку из высокопрочных сталей.

Для армирования титана и его сплавов применяют молибденовую проволоку, волокна сапфира, карбида кремния и борида титана.

Повышение жаропрочности никелевых сплавов достигается армированием их вольфрамовой или молибденовой проволокой. Металлические волокна используют и в тех случаях, когда требуются высокие теплопроводность и электропроводимость. Перспективными упрочнителями для высокопрочных и высокомодульных волокнистых композиционных материалов являются нитевидные кристаллы из оксида и нитрида алюминия, карбида и нитрида кремния, карбида бора и др., имеющие ав = 15 000-г-28 000 МПа и Е = 400-*-600 ГПа.

В табл. 44 приведены свойства некоторых волокнистых композиционных материалов.

Композиционные материалы на металлической основе обладают высокой прочностью (ств, а_х) и жаропрочностью, в то же время они малопластичны. Однако волокна в композиционных материалах уменьшают скорость распространения трещин, зарождающихся в матрице, и практически полностью исключают внезапное

Зависимость модуля упругости Е (а) и временного сопротивления о(б) бороалюминиевого композиционного материала вдоль (/) и поперек (2) оси армирования от объемного содержания борного волокна

Рис. 197. Зависимость модуля упругости Е (а) и временного сопротивления ов (б) бороалюминиевого композиционного материала вдоль (/) и поперек (2) оси армирования от объемного содержания борного волокна

хрупкое разрушение. Отличительной особенностью одноосных волокнистых композиционных материалов являются анизотропия механических свойств вдоль и поперек волокон и малая чувствительность к концентраторам напряжения.

На рис. 197 приведена зависимость ав и Е бороалюминиевого композиционного материала от содержания борного волокна вдоль (/) и поперек (2) оси армирования. Чем больше объемное содержание волокон, тем выше ав, a_t и Е вдоль оси армирования. Однако необходимо учитывать, что матрица может передавать напряжения волокнам только в том случае, когда существует прочная связь на поверхности раздела армирующее волокно — матрица. Для предотвращения контакта между волокнами матрица должна полностью окружать все волокна, что достигается при содержании ее не менее 15—20 %.

Матрица и волокно не должны между собой взаимодействовать (должна отсутствовать взаимная диффузия) при изготовлении или эксплуатации, так как это может привести к понижению прочности композиционного материала.

Анизотропия свойств волокнистых композиционных материалов учитывается при конструировании деталей для оптимизации свойств путем согласования поля сопротивления е полями напряжения.

Армирование алюминиевых, магниевых и титановых сплавов непрерывными тугоплавкими волокнами бора, карбида кремния, диборида титана и оксида алюминия значительно повышает жаропрочность. Особенностью композиционных материалов является малая скорость разупрочнения во времени (рис. 198, а) с повышением температуры.

Длительная прочность бороалюминисвого композиционного материала, содержащего 50% борного волокна, в сравнении с прочностью титановых сплавов

Рис. 198. Длительная прочность бороалюминисвого композиционного материала, содержащего 50% борного волокна, в сравнении с прочностью титановых сплавов (а) и длительная прочность никелевого композиционного материала в сравнении с прочностью дисперсионно-твердеющих сплавов (б):

/ — бороалюмнниевый композит; 2 — титановый сплав; 3 — дисперсионно-упрочненный композиционный материал; 4 — дисперсионно-твердеющие сплавы

Основным недостатком композиционных материалов с одно- и двумерным армированием является низкое сопротивление меж- слойному сдвигу и поперечному обрыву. Этого недостатка лишены материалы в объемным армированием.

  • [1] Широко применяют полимерные, керамические и другие матрицы.
 
Посмотреть оригинал
< Предыдущая   СОДЕРЖАНИЕ   Следующая >
 

Популярные страницы