ЧУГУН

Сплав железа с углеродом (>2,14 % С) называют чугуном. Присутствие эвтектики в структуре чугуна (см. рис. 87) обусловливает его использование исключительно в качестве литейного сплава. Углерод в чугуне может находиться в виде цементита или графита, или одновременно в виде цементита и графита. Цементит придает излому специфический светлый блеск. Поэтому чугун, в котором весь углерод находится в виде цементита, называют белым. Графит придает излому чугуна серый цвет, поэтому чугун называют серым. В зависимости от формы графита и условий его образования различают следующие чугуны: серый, высокопрочный и ковкий (см. рис. 101 и 102).

СЕРЫЙ И БЕЛЫЙ ЧУГУНЫ

Серый чугун (технический) представляет собой, по существу, сплав Fe—Si—С, содержащий в качестве постоянных примесей Mn, Р и S. В структуре серых чугунов большая часть или весь углерод находится в виде графита. Характерная особенность структуры серых чугунов, определяющая многие его свойства, заключается в том, что графит имеет в поле зрения микрошлифа форму пластинок (см. рис. 88). Наиболее широкое применение получили доэвтектические чугуны, содержащие 2,4— 3,8 % С. Чем выше содержание в чугуне углерода, тем больше образуется графита и тем ниже его механические свойства. В то же время для обеспечения высоких литейных свойств (хорошей жид- котекучести) должно быть не менее 2,4 % С.

Кремний, содержание которого в серых чугунах находится в пределах 1,2—3,5 %, оказывает большое влияние на строение, а следовательно, и на свойства чугунов, поэтому при изучении структурообразования в техническом чугуне нужно пользоваться не диаграммой состояния Fe—С, а тройной диаграммой Fe—Si—С.

Разрез тройной диаграммы состояния Fe—Si—С для постоянного содержания кремния (2 %) показан на рис. 99. В отличие от стабильной диаграммы Fe—С (см. рис. 87) в системе Fe—Si—С перитектическое (Ж+

Диаграмма состояния Fe-Si-C (2 % Si)

Рис. 99. Диаграмма состояния Fe-Si-C (2 % Si):

Ж — жидкая фаза; А аустенит; Г •* графит

-f- 6-феррит-? А), эвтектическое (Ж-*А + Г) и эвтектоид- ное (А -? Ф + Г) превращения протекают не при постоянной температуре, а в некотором интервале температур.

Величина температурного интервала, в котором в равновесии с жидким сплавом находятся аустенит и графит, зависит от содержания кремния. Чем больше содержание кремния, тем шире эвтектический интервал температур.

Охлаждение чугуна в реальных условиях вносит существенные отклонения от условий равновесия. Структура чугуна в отливках зависит в первую очередь от химического состава (содержания углерода и кремния) и скорости кристаллизации.

Кремний способствует процессу графитизации, действуя в том же направлении, что и замедление скорости охлаждения. Изменяя, с одной стороны, содержание в чугуне углерода и кремния, а с другой — скорость охлаждения, можно получить различную структуру металлической основы чугуна. Структурная диаграмма для чугунов, показывающая, какой должна быть структура в отливке с толщиной стенки 50 мм, в зависимости от содер-

Структурные диаграммы для чугунов

Рис. 100. Структурные диаграммы для чугунов:

а — влияние С в Si; ни структуру чугуна: б — влияние скорости охлаждения (толщины отливкн) и суммы С + SI на структуру чугуна; I — белые чугуны; //— V — серые чу- гуны

Структура чугуна, Х500

Рис. 101. Структура чугуна, Х500:

а — белый чугун; б — перлитный серый чугун: в — ферритно-перлитный серый чугун; г — ферритный серый чугун

жания в чугуне кремния и углерода показана на рис. 100, а. При данном содержании углерода, чем больше в чугуне кремния, тем полнее протекает графитизация. Чем больше в чугуне углерода, тем меньше требуется кремния для получения заданной структуры.

В зависимости от содержания углерода, связанного в цементит, различают:

  • 1. Белый чугун (рис. 100, а, /), в котором весь углерод находится в виде цементита Fe3C. Структура такого чугуна — перлит, ледебурит и цементит (рис. 100, а, I и 101, а).
  • 2. Половинчатый ч>тун (рис. 100, а, //), большая часть углерода (>0,8 %) находится в виде Fe3C. Структура такого чугуна — перлит, ледебурит и пластинчатый графит С
  • 3. Перлитный серый чугун (рис. 100, а, III) структура чугуна (рис. 101, б) — перлит и пластинчатый графит. В этом чугуне 0,7—0,8 °b С находится в виде Fe3C, входящего в состав перлита. [1]
  • 4. Ферритно-перлитный (рис. 100, а, /V) серый чугун. Структура такого чугуна (рис. 101, в) — перлит, феррит и пластинчатый графит (составы см. на рис. 100, а, III). В этом чугуне в зависимости от степени распада эвтектоидного цементита в связанном состоянии находится от 0,7 до 0,1 % С.
  • 5. Ферритный серый чугун (рис. 100, а, V). Структура (рис. 101, г) — феррит и пластинчатый графит. В этом случае весь углерод находится в виде графита.

При данном содержании углерода и кремния графитизация протекает тем полнее, чем медленнее охлаждение. В производственных условиях скорость охлаждения удобно характеризовать по толщине стенки отливки. Чем тоньше отливка, тем быстрее охлаждение и в меньшей степени протекает графитизация (рис. 100, б).

Следовательно, содержание кремния надо увеличивать в отливке небольшого сечения, охлаждающейся ускоренно, или в чугуне с меньшим содержанием углерода. В толстых сечениях отливок, охлаждающихся медленнее, графитизация протекает полнее и содержание кремния может быть меньше. Количество марганца в чугуне не превышает 1,25—1,4 %. Марганец препятствует гра- фитизации, т. е. затрудняет выделение графита и повышает способность чугуна к отбеливанию — появлению, особенно в поверхностных слоях, структуры белого или половинчатого чугуна. Сера является вредной примесью, ухудшающей механические и литейные свойства чугуна. Поэтому ее содержание ограничивают до 0,1—0,2 %. В сером чугуне сера образует сульфиды (FeS, MnS) или их твердые растворы (Fe, Мп) S [2].

Содержание фосфора в сером чугуне чаще 0,2 %, но иногда допускается даже до 0,4—0,5 %. При повышенном содержании фосфора в структуре чугуна образуются твердые включения фосфидной эвтектики: в серых чугунах — двойной (Fe3P + аустенит), а в белых — тройной (Fe3C + Fe8P + аустенит). Эвтектика улучшает литейные свойства чугуна.

Механические свойства чугуна обусловлены его структурой, главным образом графитной составляющей. Чугун можно рассматривать как сталь, пронизанную графитом, который играет роль надрезов, ослабляющих металлическую основу структуры. В этом случае механические свойства будут зависеть от количества, величины и характера распределений включений графита.

Чем меньше графитных включений, чем они мельче и больше степень изолированности их, тем выше прочность чугуна. Чугун о большим количеством прямолинейных крупных графитных выделений, разделяющих его металлическую основу, имеет грубозернистый излом и низкие механические свойства. Чугун с мелкими

и завихренными графитными выделениями обладает более высокими свойствами.

Пластинки графита уменьшают сопротивление отрыву, временное сопротивление и особенно сильно пластичность чугуна. Относительное удлинение при растяжении серого чугуна независимо ог свойств металлической основы практически равно нулю (—'0,5 %). Графитные включения мало влияют на снижение предела прочности при сжатии и твердость, величина их определяется главным образом структурой металлической основы чугуна. При сжатии чугун претерпевает значительные деформации и разрушение имеет характер среза под углом 45°. Разрушающая нагрузка при сжатии в зависимости от качества чугуна и его структуры в 3—5 раз больше, чем при растяжении. Поэтому чугун рекомендуется использовать преимущественно для изделий, работающих на сжатие.

Пластинки графита менее значительно, чем при растяжении, снижают прочность и при изгибе, так как часть изделия испытывает сжимающие напряжения. Предел прочности при изгибе имеет промежуточное значение между пределом прочности на растяжение и на сжатие. Твердость чугуна 143—255 НВ.

Графит, нарушая сплошность металлической основы, делает чугун малочувствительным к всевозможным концентраторам напряжений (дефектам поверхности, надрезам, выточкам и т. д.). Вследствие этого серый чугун имеет примерно одинаковую конструктивную прочность в отливках простой формы или с ровной поверхностью и сложной формы с надрезами или с плохо обработанной поверхностью. Графит повышает износостойкость и антифрикционные свойства чугуна вследствие собственного «смазывающего» действия и повышения прочности пленки смазочного материала. Очень важно, что графит улучшает обрабатываемость резанием, делая стружку ломкой.

Металлическая основа в сером чугуне обеспечивает наибольшую прочность и износостойкость, если она имеет перлитную структуру (см. рис. 100, б). Присутствие в структуре феррита, не увеличивая пластичность и вязкость чугуна, снижает его прочность и износостойкость. Наименьшей прочностью обладает ферритный серый чугун.

Серый чугун маркируется буквами С — серый и Ч — чугун (ГОСТ 1412—85). После букв следуют цифры, указывающие минимальное значение временного сопротивления 10"1 МПа (кгс/мм2).

Серые чугуны по свойствам и применению можно разделить на следующие группы.

Ферритные и ферритно-перлитные чугуны (СЧ 10, СЧ 15, СЧ 18) имеют временное сопротивление 100—180 МПа (10—• 18 кгс/мм2), предел прочности при изгибе 280—320 МПа (28— 32 МПа). Их примерный состав: 3,5—3,7 % С; 2,0—2,6 % Si; 0,5--0,8 % Ми; <0,3% Р; <0,15% S. Структура чугунов — перлит, феррит и графит чаще в виде крупных выделений (СЧ 10,

СЧ 15). Эти чугуны применяют для малоответственных деталей, испытывающих небольшие нагрузки в работе с толщиной стенки отливки 10—30 мм. Так, чугун СЧ 10 используют для строительных колонн, фундаментных плит, а чугуны СЧ 15 и СЧ 18 —для литых малонагруженных деталей сельскохозяйственных машин, станков, автомобилей и тракторов, арматуры и т. д.

Перлитные чугуны (СЧ 21, СЧ 24, СЧ 25, СЧ 30, СЧ 35) применяют для ответственных отливок (станин мощных станков и механизмов, поршней, цилиндров, деталей, работающих на износ в условиях больших давлений, компрессоров, арматуры, дизельных цилиндров, блоков двигателей, деталей металлургического оборудования и т. д.) с толщиной стенки до 60—100 мм [3]. Структура этих чугунов — мелкопластинчатый перлит (сорбит) с мелкими завихренными графитными включениями. К перлитным относятся так называемые сталистые и модифицированные чугуны.

При выплавке сталистых чугунов СЧ 24, СЧ 25 в шихту добавляют 20—30 % стального лома; чугуны имеют пониженное содержание углерода, что обеспечивает получение более дисперсной перлитной основы с меньшим количеством графитных включений. Примерный состав: 3,2—3,4 % С; 1,4—2,2 % Si; 0,7—

1,0 % Мп; <0,2 % Р; <0,15 % S. Содержание кремния в этих чугунах должно быть достаточным для предотвращения отбеливания чугуна.

Модифицированные чугуны (СЧ 30, СЧ 35) получают при добавлении в жидкий чугун перед разливкой специальных добавок— модификаторов (графит, 75 %-ный ферросилиций, силико- кальций в количестве 0,3—0,8 % и т. д.). Модифицирование применяют для получения в чугунных отливках с различной толщиной стенок перлитной металлической основы с вкраплением небольшого количества изолированных пластинок графита средней величины.

Модифицированию подвергают низкоуглеродистый чугун, содержащий сравнительно небольшое количество кремния и повышенное количество марганца и имеющий без введения модификатора структуру половинчатого чугуна, т. е. ледебурит, перлит и графит. Примерный химический состав чугуна: 2,2—3,2 % С; 1,0-2,9 % Si; 0,2—1,1 % Мп; <0,2 % Р; <0,12 %.

Для снятия литейных напряжений и стабилизации размеров чугунные отливки отжигают при 500—600 °С. В зависимости от формы и размеров отливки выдержка при температуре отжига составляет 2—10 ч. Охлаждение после отжига медленное, вместе о печью. После такой обработки механические свойства изменяются мало, а внутренние напряжения снижаются на 80—90 %. Иногда для снятия напряжений в чугунных отливках применяют естественное старение чугуна — выдержку их на складе в течение 6—10 месяцев; такая выдержка снижает напряжения на 40—50 % .

Антифрикционные чугуны применяют для изготовления подшипников скольжения, втулок и других деталей, работающих при трении о металл, чаще в присутствии смазочного материала. Эти чугуны должны обеспечивать низкое трение (малый коэффициент трения), т. е. антифрикционность. Антифрикционные свойства чугуна определяются соотношением перлита и феррита в основе, а также количеством и формой графита. Антифрикционные чугуны изготовляют следующих марок [4]:

АЧС-1 (3,2—3,6 % С; 1,3—2,0 % Si; 0,6—1,2 % Мп; 0,15— 0,4% Р; <0,12% S; 0,2— 0,5 % Сг; 1,5—2,0 % Си); АЧС-2 (3,2—3,8% С; 1,4—2,2% Si; 0,3—1% Мп; 0,15—0,4 % Р; <0,12 % S; 0,2—0,5 % Сг; 0,2—0,5 % Ni; 0,03—0,1 % Ti; 0,2— 0,5 % Си) и АЧС-3 (3,2—3,8 % С; 1,7—2,6 % Si; 0,3—0,7 % Мп; 0,15—0,4% Р; 0,2—0,5 % Си; <0,12% S; 0,03—0,1% Ti).

Детали, работающие в паре с закаленными или нормализованными стальными валами, изготовляют из перлитных серых чугу- нов АЧС-1 и АЧС-2; для работы в паре с термически необработанными валами применяют перлитно-ферритный чугун АЧС-3.

Перлитный чугун, содержащий повышенное количество фос^ фора (0,3—0,5 %), используют для изготовления поршневых колец. Высокая износостойкость колец обеспечивается металлической основой, состоящей из тонкого перлита и равномерно распределенной фосфидной эвтектики при наличии изолированных выделений пластинчатого графита.

  • [1] Графит кристаллизуется в виде довольно сложных форм (см. рис. 88, б, о),но сечение их плоскостью микрошлифа дает вид пластинок.
  • [2] 2 В белых чугунах возможно образование эвтектики (Fe + FeS) и растворение серы в FeaC.
  • [3] Чем больше толщина стенок отливки, тем ниже механические свойства. 149
  • [4] А — антифрикционный, Ч — чугун, С — серый.
 
Посмотреть оригинал
< Пред   СОДЕРЖАНИЕ   ОРИГИНАЛ   След >