РАЗРУШЕНИЕ МЕТАЛЛОВ

Под разрушением понимают процесс зарождения и развития в металле трещин, приводящий к разделению его на части. Разрушение происходит в результате или развития нескольких трещин, или слияния рядом расположенных трещин в одну магистральную трещину, по которой происходит полное разрушение.

Разрушение может быть хрупким (в металлах — квазихрупким) и (или) вязким. Механизм зарождения трещин одинаков как при хрупком, так и при вязком разрушении. Возникновение микротрещин чаще происходит благодаря скоплению движущихся дислокаций (пластической деформации) перед препятствием (границами зерен, межфазными границами, перед всевозможными включениями и т. д.).

Схема образования трещины

Рис. 55. Схема образования трещины:

/ — грещина; 2 — граница верна

В месте скопления дислокации они могут прийти в столь тесное соприкосновение, что их экстраплоскости сливаются, а под ними образуется зародышевая трещина (рис. 55). Трещина образуется в плоскости, перпендикулярной к плоскости скольжения, когда плотность дислокаций достигает 1012 — 1013 см-2, а касательные напряжения у вершины их скопления ~0,7 G. При хрупком разрушении возникшая трещина становится нестабильной и растет самопроизвольно, если ее длина (при заданном напряжении) превышает некоторое критическое значение, а вершина трещины сохраняет остроту, соизмеримую (по радиусу у вершины) с атомными размерами. В этом случае напряжения на краю трещин оказываются достаточными для нарушения межатомной связи.

При разрушении распространяющаяся трещина будет окаймлена узкой зоной пластической деформации, на создание кото-

Изломы стали

Рис. 56. Изломы стали:

а — виды излома; 1 — хрупкий; 2 в 3 — вмешанные; 4 — вязкий; в — микрофракто- рраммы (слева направо) вязкого (чашечный), хрупкого (ручьистый), ннтеркристаллит- вого хрупкого изломов (Х5000)

рой затрачивается дополнительная энергия. Вязкое и хрупкое разрушения различаются между собой по величине пластической зоны у вершины трещины. При хрупком разрушении величина пластической зоны в устье трещины мала. При вязком разрушении величина пластической зоны, идущей впереди распространяющейся трещины, велика, а сама трещина затупляется у своей вершины.

Вязкое разрушение обусловлено малой скоростью распространения трещины. Скорость распространения хрупкой трещины весьма велика. Для стали скорость роста трещины достигает 2500 м/с. Поэтому нередко хрупкое разрушение называют «внезапным», или «катастрофическим», разрушением.

Вязкое и хрупкое разрушения можно связать с энергоемкостью процесса разрушения при том или ином виде испытания. Вязкому разрушению соответствуют обычно высокие значения поглощенной энергии, т. е. большая работа распространения трещины. Энергоемкость хрупкого разрушения мала и соответственно работа распространения трещины также мала.

С точки зрения микроструктуры существуют два вида разрушения — транскристаллитное и интеркристаллитное. При транс- кристаллитном разрушении трещина распространяется по телу зерна, а при интеркристаллитном она проходит по границам зерен.

При распространении трещины по телу зерна может происходить как вязкое, так и хрупкое разрушение. Межзеренное разрушение всегда является хрупким. Надо отметить, что межзеренное разрушение присутствует всегда, но больше проявляется при хрупком разрушении.

По внешнему виду излома различают: 1) хрупкий (светлый) излом (рис. 56, а, /), поверхность разрушения которого характеризуется наличием блестящих плоских участков; такой излом свойствен хрупкому разрушению; 2) вязкий (матовый) излом (рис. 56, а, 4), поверхность разрушения которого содержит весьма мелкие уступы — волокна, образующиеся при пластической деформации зерен в процессе разрушения; этот излом свидетельствует о вязком разрушении. Смешанный характер разрушения показан на рис. 56, а, 2, 3.

Изучение тонкой структуры излома с помощью электронного микроскопа (микрофрактография) позволяет более уверенно судить о вязком или хрупком характере разрушения. Вязкое разрушение характеризуется ямочным («чашечным») изломом (рис. 56, б, первый слева); ямка — микроуглубление на поверхности излома, возникающее в результате образования, роста и слияния микропустот. Глубина ямки определяется способностью металла к локальной пластической деформации.

Излом при хрупком разрушении имеет ручьистый узор (см. рис. 56, б), представляющий собой систему сходящихся ступенек скола [1], образующихся в результате деформации разрушения перемычек между хрупкими трещинами, распространяющимися путем скола по параллельным, близко расположенным кристаллографическим плоскостям. В отличие от вязкого разрушения хрупкое разрушение распространяется внутри отдельных зерен вдоль плоскости с наиболее плотной упаковкой атомов, называемой плоскостью скола.

Вязкий чашечный и хрупкий ручьистый изломы относятся к транскристаллическому разрушению.

При исследовании на электронном микроскопе хрупкое разрушение, идущее по границам зерен, выявляется в виде гладких поверхностей, так называемых фасеток зернограничного скола часто с некоторым количеством выделившихся частиц (см. рис. 56).

Межзеренное разрушение облегчается при выделении по границам зерен частиц хрупкой фазы.

Схемы хрупкого (/) и вязкого (//) разрушений стали в зависимости от температуры

Рис. 57. Схемы хрупкого (/) и вязкого (//) разрушений стали в зависимости от температуры

Одни и те же (по составу) сплавы в зависимости от предшествующей обработки и метода испытания могут быть и вязкими и хрупкими.

Многие металлы (Fe, Mo, W, Zn и др.), имеющие ОЦК и ГПУ кристаллические решетки, в зависимости от температуры могут разрушаться как вязко, так и хрупко. Понижение температуры обусловливает переход от вязкого к хрупкому разрушению. Это явление получило название хладноломкости. Явление хладноломкости можно объяснить схемой А. Ф. Иоффе (рис. 57). Понижение температуры практически не изменяет сопротивления отрыву (разрушающего напряжения), но повышает сопротивление пластической деформации ат (предел текучести). Поэтому металлы, вязкие при сравнительно высоких температурах, могут при низких температурах разрушаться хрупко. В указанных условиях сопротивление отрыву достигается при напряжениях, меньших, чем предел текучести. Точка пересечения кривых (7Т и 50тр, соответствующая температуре перехода металла от вязкого разрушения к хрупкому, получила название критической температуры хрупкости, или порога хладноломкости (tn. х). Чем выше скорость деформации, тем больше склонность металла к хрупкому разрушению. Все концентраторы напряжений способствуют хрупкому разрушению. С увеличением остроты и глубины надреза склонность к хрупкому разрушению возрастает. Чем больше размеры изделия, тем больше вероятность хрупкого разрушения (масштабный фактор).

Вопросы для самопроверки

  • 1. Чем отличаются истинные напряжения от условных?
  • 2. Что такое концентраторы напряжений и почему они опасны?
  • 3. Что происходит в металле при упругой деформации?
  • 4. Как протекает пластическая деформация? Какие стадии можно отметить в процессе деформации монокристалла?
  • 5. Чем отличается деформация поликристалла от деформации монокристалла?
  • 6. Что такое текстура деформации и как она влияет на свойства металла?
  • 7. Чем объяснить упрочнение металла (наклеп) в процессе деформации?
  • 8. Что предопределяет сверхпластичность металлов и сплавов?
  • 9. Каковы признаки вязкого и хрупкого разрушений?
  • 10. Объясните механизм образования и рост трещины.
  • 11. Каковы особенности структуры вязкого и хрупкого изломов?
  • 12. При каких условиях чаще наблюдается хрупкое разрушение?

  • [1] Элемент микрорельефа излома, образующийся при соединении двух поверхностей разрушения, расположенных на равных уровнях.
 
< Пред   СОДЕРЖАНИЕ   След >