Парадокс Кондорсе (парадокс голосования)

Проблема состоит в следующем: если в обществе не существует единодушия по поводу принятия тех или иных альтернативных программ, то каким путем можно выявить общественные предпочтения?

При изучении микроэкономики мы исходили из того, что отдельные индивидуумы поступают рационально при выборе между различными альтернативами. Один из признаков рациональности — транзитивность предпочтений индивида. Например, если вы яблоки любите больше, чем апельсины, а апельсины больше, чем грейпфруты, то при выборе между яблоками и грейпфрутами вы предпочтете яблоки. Казалось бы, если «человек экономический» в состоянии сделать рациональный выбор, то и общество в целом способно осуществить такой выбор. Но как реализовать коллективный рациональный выбор? Возможный на первый взгляд ответ — по принципу большинства при голосовании. Да, это было бы просто, если бы имелась одна программа, или альтернатива. И так же несложно было бы осуществить рациональный коллективный выбор, если было бы очевидное большинство даже при наличии более одной или двух программ (табл. 4.1).

Допустим, предлагается три программы (А, В, С) для выбора тремя индивидами (или тремя представителями одинаковых по численности групп): Красновым, Черновым и Беловым. Они ранжируют свои предпочтения, ставя А, В, С на 1-е, 2-е или 3-е место.

Таблица 4.1

Предпочтения избирателей в случае очевидного большинства голосов

Группа голосующих

Ранги альтернатив

А

В

С

Краснов

1

2

3

Чернов

1

3

2

Белов

2

1

3

В данном случае сразу видно, что общество твердо предпочитает альтернативу А. Она стоит на 1-м месте у Краснова и Чернова, т.е. большинство голосов позволило сразу выявить «победителя» среди альтернатив.

Тем не менее может сложиться ситуация, когда надо выбирать между несколькими альтернативами, и предпочтения тогда иные (табл. 4.2).

Таблица 4.2

Предпочтения избирателей: парадокс голосования

Группа голосующих

Ранги альтернатив

А

В

С

Краснов

1

2

3

Чернов

3

2

2

Белов

2

3

1

В ситуации, представленной в табл. 4.2, придется выбирать попарно.

Вначале делается выбор между А и В — большинством голосов выберут А (Краснов и Белов предпочитают эту альтернативу, ставя ее соответственно на 1-е и 2-е место). Затем надо выбрать между В и С — выберут В (Краснов и Чернов за В). Далее надо выбрать между А и С— выберут С (Чернов и Белов за С).

Но ведь, казалось бы, если соблюдается принцип транзитивности на уровне индивидуального выбора (индивид предпочитает альтернативу А альтернативе В и альтернативу В альтернативе С), то и общество должно предпочесть альтернативу А альтернативе С. Однако в случае коллективного выбора, приведенного в табл. 4.2, наглядно показано, что принцип транзитивности нарушен. Эта таблица иллюстрирует парадокс Кондорсе, демонстрирующий непоследовательность голосования простым большинством голосов. Иначе говоря, голосование по такому правилу не всегда приводит к рациональному коллективному выбору, несмотря на демократичность этой процедуры.

Обратим внимание на то, что в рассмотренном выше примере механизм голосования приводит к «зацикливанию»[1]. Действительно ли нам удалось найти общественные предпочтения и таковыми являются предпочтения сторонников альтернативы С? Окончательный выбор будет зависеть от порядка попарного выявления предпочтений индивидов. Так, в отличие от приведенного выше примера можно вначале выбирать между А и С, затем между В и С и, наконец, между А и В. Последний выбор окажется в пользу альтернативы В. Общество будет непрерывно двигаться по кругу, поскольку попарное голосование превращается в бесконечный цикл.

В связи с «зацикливанием» теория общественного выбора рассматривает проблему манипулирования повесткой дня. Это понятие означает, что в случае «зацикливания» исход голосования будет зависеть от индивида, определяющего процедуру голосования, т.е. порядок, соответственно которому будет проходить попарное голосование. Парадокс Кондорсе показывает, какими могут быть уловки председательствующего, чтобы протащить нужную ему программу, например программу А. Он устанавливает такую процедуру голосования, когда проигравшая при попарном выборе альтернатива выбывает из дальнейшего рассмотрения, а также определяет очередность голосования. Так, если требуется выбирать между А и С и председательствующий желает «протолкнуть» программу А, хотя ожидается, что избиратели проголосуют за С, нужно выставить хорошо подобранную программу В. И проголосовать вначале между В и С. Тогда выиграет программа В, и С выбывает из дальнейшей процедуры голосования. А потом выбирать между А и В, и в таком случае выиграет А, что и требовалось манипулятору! Проблема манипулирования, рассматриваемая в теории общественного выбора, делает понятной ту важность, которую придают участники политического процесса постам председательствующего в законодательных собраниях, избирательных комиссиях и т.п.

Мы должны констатировать, что в обществе не существует транзитивности предпочтений, поскольку результаты выбора могут меняться в зависимости от процедуры коллективного голосования. А ведь на индивидуальном уровне это невозможная ситуация. Например, если вы рациональный индивид, то, любя больше Аню, чем Валю, а Валю больше, чем Свету, вы не измените своих предпочтений относительно этих девушек, как бы попарно вам ни предложили выбирать: вначале между Аней и Валей или вначале между Аней и Светой и т.п. Аня всегда будет занимать у вас первое место, т.е. индивидуальный выбор всегда тран- зитивен.

Парадокс Кондорсе породил большой поток научной литературы. Интерес к нему вновь возник в середине прошлого века в связи с работами К. Эрроу, сформулировавшего в 1951 г. свою знаменитую теорему о невозможности[2]. Парадокс Кондорсе может рассматриваться как частный случай этой теоремы.

  • [1] Французский философ, математик и общественный деятель маркиз МариЖан Антуан Николя де Кондорсе (1743—1794) обнаружил проблему «зацикливания» еще в 1785 г.
  • [2] Эрроу К.Дж. Коллективный выбор и индивидуальные ценности. М. : Изд.дом ГУ ВШЭ, 2004.
 
Посмотреть оригинал
< Пред   СОДЕРЖАНИЕ   ОРИГИНАЛ   След >