МЕТОДЫ, ПРИБОРЫ И АППАРАТУРА, ИСПОЛЬЗУЕМЫЕ ПРИ ТЕХНИЧЕСКОМ ОБСЛЕДОВАНИИ ЗДАНИЙ И СООРУЖЕНИЙ

Контроль качества при обследовании строительных материалов, изделий и конструкций производится двумя основными способами. Первый состоит в выявлении предельных несущих способностей объектов, что связано с доведением их до разрушения. Этот способ эффективен при проведении стандартных испытаниях образцов из стали, бетона и других конструкционных материалов. При испытании моделей сооружений и их фрагментов конструкции могут доводиться до предельных состояний. Что же касается реальных объектов, то их разрушение для выявления предельных несущих способностей экономически не всегда оправдано.

Второй способ связан с производством испытаний неразрушающими методами, что позволяет сохранить эксплуатационную пригодность рассматриваемого объекта без нарушения его несущей способности. Этот способ наиболее приемлем при обследовании зданий и сооружений, находящихся в эксплуатации.

Неразрушающие методы испытаний построены в основном на косвенном определении свойств и характеристик объектов и могут быть классифицированы по следующим видам:

  • • метод проникающих сред, основанный на регистрации индикаторных жидкостей или газов, находящихся в материале конструкции;
  • • механические методы испытаний, связанные с анализом местных разрушений, а также изучением поведения объектов в резонансном состоянии;
  • • акустические методы испытаний, связанные с определением параметров упругих колебаний с помощью ультразвуковой нагрузки и регистрацией эффектов акустоэмиссии;
  • • магнитные методы испытаний (индукционный и магнитопорошковый);
  • • радиационные испытания, связанные с использованием нейтронов и радиоизотопов;
  • • радиоволновые методы, построенные на эффекте распространения высококачественных и сверхчастотных колебаний в излучаемых объектах;
  • • электрические методы, основанные на оценке электроемкости, электроиндуктивности и электросопротивления изучаемого объекта;
  • • геодезические методы, или использование геодезических приборов и инструментов при освидетельствовании и испытаниях конструкций.

Метод проникающих сред можно разделить на два: метод течеиска- ния и капиллярный. Первый из них используют для контроля герметичности резервуаров, газгольдеров, трубопроводов и других подобных сооружений.

При испытаниях водой проверяемые емкости заполняются до отметки, превышающей эксплуатационный уровень. В закрытых сосудах давление жидкости повышается путем дополнительного нагнетания воды или воздуха. При наличии дефектов вода просачивается сквозь неплотности или трещины проверяемой конструкции.

Для выявления трещин иногда применяют вместо воды керосин. Благодаря малой вязкости и незначительному поверхностному натяжению по сравнению с водой керосин легко проникает через поры и трещины и выступает на противоположной стороне конструкции.

В металлических емкостях поверхность сварных швов с одной стороны обильно смачивается или опрыскивается керосином, а противоположная — предварительно подбеливается водным раствором мела и высушивается. При наличии трещин на подсохшем светлом фоне отчетливо выявляются ржавые пятна и полосы от действия керосина.

Простейший способ, основанный на использовании сжатого воздуха, состоит в обдувании швов с одной стороны сжатым воздухом под давлением 4 атм. по направлению, перпендикулярному поверхности. Противоположная поверхность предварительно обмазывается мыльной водой. Образование мыльных пузырей указывает на наличие сквозных трещин.

Для выявления трещин, не видимых невооруженным глазом, используется капиллярный метод. Этим методом выявляют дефекты путем образования индикаторных рисунков с высоким оптическим контрастом и с шириной линий, превышающей ширину раскрытия дефектов.

Механический неразрушающий метод можно разделить на метод местных разрушений, метода пластических деформаций и метод упругого отскока.

Метод местных разрушений связан с некоторым ослаблением несущей способности конструкций, поскольку образцы для испытаний извлекаются непосредственно из самой конструкции. Отбор образцов обычно производят из наименее напряженных элементов конструкций, например, из верхних поясов балок у крайних шарнирных опор, из нулевых стержней ферм и т.п. После извлечения образцов из тела конструкции необходимо сразу же восстановить конструкцию, а испытания образцов осуществить немедленно. В противном случае необходимо принять меры для консервации образцов.

Рациональной является также установка бездонных форм, закладываемых в тело конструкции при ее бетонировании и извлекаемых затем для проведения испытаний.

В меньшей мере подвергаются внешним возмущениям конструкции при использовании приемов, основанных на косвенном определении механических характеристик. Так, прочность бетона может быть установлена путем испытания на отрыв со скалыванием. Эти испытания связаны либо с извлечением из тела бетона заранее установленных анкеров, либо с отрывом из массива некоторой его части. Прием, основанный на определении прочности бетона отрывом, менее трудоемок. В этом случае на поверхности бетона с помощью эпоксидного клея крепят стальной диск, а определение класса бетона производят по градуировочной зависимости условного напряжения R = 4Р/лё2 при отрыве. Скорость нагружения диска не должна превышать 1 кН/с. На каждом образце проводят испытания на отрыв на двух противоположных гранях.

Прочность бетона может быть установлена путем скалывания участка ребра конструкции усилием Р. При ширине площадки скалывания 30 мм ребро конструкции повреждается на участке 60—100 мм. Для получения приемлемых результатов проводят испытания на двух соседних участках и берут среднее значение, а для построения градуировочной зависимости усилия скалывания от прочности бетона на сжатие испытывают стандартные бетонные кубы со стороной 200 мм.

Метод пластических деформаций основан на оценке местных деформаций, вызванных приложением к конструкции сосредоточенных усилий. Этот метод основан на зависимости размеров отпечатка на поверхности элемента, полученного при вдавливании индентора статистическим или динамическим воздействием, от прочностных характеристик материала. Достоинство этого метода — в его технологической простоте, недостаток — в оценке прочности материала по состоянию поверхностных слоев.

При определении прочности бетона пользуются приборами как статического действия (штамп НИИЖБа и прибор М.А. Новгородского), так и ударного (молоток К. П. Кашкарова).

Принцип действия штампа НИИЖБа (рис. 4.1) заключается в том, что между испытуемой поверхностью и штампом прокладываются листы белой и копировальной бумаги так, чтобы на белой бумаге оставался отпечаток штампа при его вдавливании в тело бетона гидравлическим домкратом. По диаметру отпечатка с помощью градуировочной кривой в зависимости от радиуса штампа г и силы Р вдавливания определяют класс бетона.

Штамп НИИЖБа

Рис. 4.1. Штамп НИИЖБа:

1 — испытываемая конструкция; 2 — скоба; 3 — штамп; 4 — гидродомкрат; 5 — белая и копировальная бумага

Большое применение в практике находит молоток К. П. Кашкарова (рис. 4.2). Принцип определения прочности бетона с его помощью аналогичен описанному выше. Отличие заключается в том, что удар молотком наносят вручную, и в зависимости от отношения диаметра отпечатка do на бетоне и диаметра отпечатка на эталонном стержне d3 молотка (do/d3) по градуировочной кривой определяют прочность бетона.

Молоток К.П. Кашкарова

Рис. 4.2. Молоток К.П. Кашкарова

Наиболее стабильные и приемлемые результаты при использовании молотка К. П. Кашкарова получаются, если бетон испытывается в возрасте 28 суток и при влажности 2—6%. В других случаях прочность бетона на сжатие R можно определить по формуле

где Кв — коэффициент, учитывающий влажность бетона;

A't — коэффициент, учитывающий возраст бетона.

Эти коэффициенты рекомендуется определять опытным путем.

Метод упругого отскока основан на существовании зависимости между параметрами, характеризующими упругие свойства материала, и параметрами, определяющими прочность на сжатие. Существуют два принципа построения приборов. Один основан на отскакивании бойка от ударника — наковальни, прижатого к поверхности испытуемого материала, другой — на отскакивании от поверхности испытуемого материала.

Наиболее распространен первый принцип, который реализован в молотке Шмидта, широко применяемом за рубежом. В нашей стране этот молоток известен как склерометр Шмидта (рис. 4.3).

Склерометр Шмидта

Рис. 4.3. Склерометр Шмидта

Склерометры Шмидта выпускают в основном пружинного типа. Молоток состоит из алюминиевого корпуса, в котором по штоку перемещается ударник. При вдавливании ударника пружин на растягивается, и после освобождения энергия растянутой пружины передается ударнику. После удара по испытуемому материалу ударник отскакивает на расстояние, которое фиксируется стрелкой на шкале прибора, и по специальной тарировочной шкале или диаграмме, приданной данному прибору, определяется прочность материала.

Ультразвуковые акустические методы (рис. 4.4) основаны на изучении характера распространения звука в конструкционных материалах. Звук — колебательное движение частиц упругой среды, распространяющееся в виде волн в газообразной, жидкой или твердой среде. Упругие волны подразделяются на инфразвуковые, частот которых находится в пределах от 20 Гц до 20 кГц, и ультразвуковые с частотой от 20 кГц до 1000 МГц. При испытании бетона и керамики применяют ультразвуковые колебания с частотой от 20 до 200 кГц, при испытании металлов и пластмасс — с частотой от 30 кГц до 10 МГц.

В практике определения прочностных свойств бетона в основном применяют измерение скорости распространения продольных ультразвуковых волн. Сущность ультразвукового импульсного метода состоит в том, что измеряют скорость распространения через бетон переднего фронта продольной ультразвуковой волны v. Исходя из зависимости R —f/(v), по измеренной v определяют прочность бетона. Для измерения v необходимо знать время прохождения ультразвука на участке определенной длины, называемом базой прозвучивания. Поскольку скорость ультразвука в бетоне велика (до 5 км/с), при обычных значениях / (до 1,5 м) приходится определять весьма малые интервалы времени, измеряемые в микросекундах.

Для возбуждения ультразвуковых волн и измерения времени их прохождения через бетон применяют специальную аппаратуру, принцип работы которой состоит в том, что электронный генератор высокочастотных импульсов периодически посылает электрические импульсы на излучатель, который преобразует эти импульсы в ультразвуковые механические волны. Из излучателя ультразвуковые волны проходят через исследуемый бетонный элемент и попадают на шуп-приемник. В приемнике ультразвуковые колебания преобразуются в электрические импульсы, направляемые в усилитель. Усиленный импульс попадает на индикатор — электронно-лучевую трубку. Имеющееся в приборе электронное устройство, называемое «ждущей задержанной разверткой», включается одновременно с пуском импульсного генератора. Развертка смещает электронный луч по экрану электронно-лучевой трубки слева направо; при этом в левой части экрана индикатора возникает вертикальная отметка, соответствующая моменту посылки импульсов, а в правой — изображение прошедших через бетон ультразвуковых импульсов. Электронный генератор создает на экране индикатора электронную шкалу меток времени в виде вертикальных отметок с интервалами, по числу которых определяют время прохождения ультразвукового импульса через бетон.

В приборах последних моделей амплитуду временного интервала между зондирующим и прошедшим через бетон импульсами измеряют малогабаритным цифровым вольтметром. Приборы выполнены на полупроводниковых элементах и интегральных микросхемах.

Контроль метрологических характеристик ультразвуковых приборов — определение основной и дополнительных погрешностей, измерение времени прохождения ультразвуковых колебаний — следует проводить согласно действующим рекомендациям, выпускаемым заводами-изготовителями вместе с приборами.

Применяют различные методики для определения прочности бетона, например, ультразвуковой метод по ГОСТ 17624—2012, который наиболее предпочтителен для тяжелых, легких, ячеистых и плотных силикатных бетонов, а также методику ВНИИФТРИМИСИ-ВЗПИ. Однако независимо от метода испытаний всегда необходимо соблюдать следующие общие положения, принятые при построении зависимости «V — Ас*»-

Поверхность бетона, на которой устанавливают щупы (ультразвуковые преобразователи), не должна иметь наплывов и вмятин, а также раковин и воздушных пор глубиной более 3 мм и диаметром более 6 мм. С поверхности должны быть удалены декоративное покрытие или облицовочный материал. Для обеспечения надежного акустического контакта между бетоном и рабочей поверхностью щупов применяют вязкие контактные среды (смазки) или эластичные прокладки. При испытаниях конструкций и образцов, применяемых для построения зависимости «V— Ясж», должна использоваться одинаковая контактная смазка. Измерение базы прозвучивания проводят с погрешностью не более ±0,5%. При испытании кубов прозвучива- ние ведут в направлении, перпендикулярном направлению укладки бетонной смеси в форму. Определение производится в кубах на трех уровнях по высоте, при этом разброс не должен превышать 5%.

А 1220 Монолит — ультразвуковой дефектоскоп

Рис. 4.4. А 1220 Монолит — ультразвуковой дефектоскоп

Магнитные методы основаны на регистрации магнитных полей рассеяния, возникающих над дефектами или на определении магнитных изделий. Магнитные методы испытаний можно классифицировать по способам регистрации магнитных полей рассеяния или определения магнитных свойств контролируемых изделий. Основными являются следующие методы: магнитопорошковый, магнитографический, феррозондовый, индукционный.

Магнитопорошковый метод — один из самых распространенных для обнаружения дефектов (рис. 4.5).

Он применяется только для контроля деталей из ферромагнитных материалов. Этот метод позволяет выявлять дефекты без разрушения изделий: неметаллические и шлаковые включения, пустоты, расслоения, дефекты сварки и трещины. Метод особенно эффективен в ре- зервуаростроении.

Магнитопорошковый дефектоскоп МД-М НТЦ

Рис. 4.5. Магнитопорошковый дефектоскоп МД-М НТЦ

Магнитографический метод состоит в записи магнитных полей рассеяния над дефектом на магнитную ленту. Этот метод применяется для проверки сплошности сварных швов различных сооружений, изготовленных из ферромагнитных сталей с толщиной стены до 18 мм.

Феррозондовый метод основан на преобразовании градиента или напряженности магнитного поля в электрический сигнал.

Индукционный метод основан на том, что выявление полей рассеяния в намагниченном контролируемом металле осуществляется с помощью катушки с сердечником, которая питается переменным током и является элементом мостовой схемы. Индукционный метод применяют для выявления трещин, непроваров и включений при контроле сварных швов.

Радиационный метод испытания основан на использовании у-лучей, источником которых являются радиоактивные изотопы. Метод эффективен при инженерно-геологических изысканиях, а также определении объемной массы тяжелых, легких и ячеистых бетонов.

Радиоволновой метод испытаний (Радиодефектоскопия) основан на проникающих свойствах радиоволн сантиметрового и миллиметрового диапазонов. Этим методом обнаруживаются поверхностные дефекты, состоящие из неметаллических материалов. От генератора, работающего в непрерывном или импульсном режиме, радиоволны проникают в конструкцию и с помощью усилителя регистрируются приемным устройством. Радиоволновым методом возможно определить влажность материала.

Для диагностики состояния конструкций зданий или сооружений используют инфракрасные излучения.

Электрические методы испытания неэлектрических величин широко распространены при контроле и определении физико-механических характеристик строительных материалов, изделий и конструкций. По замеренному электрическому сопротивлению можно судить о влажности древесины в конструкциях. Электрический метод используют также для определения влажности песка. Однако более точными являются методы определения влажности, основанные на термоэлектрических и диэлектрических эффектах. Термоэлектрический метод основан на функциональной связи теплопроводности песка с его влажностью, диэлектрический метод — на измерении электроемкости конденсатора, между пластинками которого помещается проба песка различной влажности. Электрический метод часто используют для определения содержания воды в бетонной смеси.

Геодезический метод широко применяется при освидетельствовании зданий и сооружений. В некоторых случаях его применение оказывается не только простым, но и единственно возможным способом измерения перемещений элементов конструкций. Особенно целесообразно применять геодезические методы измерения перемещений, когда подход к испытываемым конструкциям затруднен.

Самыми распространенными приборами являются нивелиры и теодолиты. Нивелиры (рис. 4.6) используются для определения величин вертикальных перемещений (осадок и прогибов) отдельных точек конструкций или сооружений. Использование прецизионных (высокоточных) нивелиров и инварных реек позволяет получать точность измерений порядка ±0,25 мм.

Нивелир

Рис. 4.6. Нивелир

Теодолиты (рис. 4.7) используются для определения горизонтальных перемещений отдельных точек, отмечаемых на конструкции специальными марками. При двух положениях вертикального круга теодолитом замеряются углы между отдельными точками на конструкции и какими-либо неподвижными предметами. Производя измерения углов через определенные промежутки времени, судят о перемещениях закрепленных марками точек здания или сооружения в угловой мере. Точность измерения углов зависит от вида используемого инструмента. Так, при применении оптических теодолитов последнего поколения ошибка измерений угла составляет ±2°.

Теодолит

Рис. 4.7. Теодолит

Для определения перемещений сооружения или его отделы точек в последние годы часто применяют метод стереофотограмметрии. Сущность метода в том, что с помощью специального фотоаппарата, соединенного с геодезической трубкой (фототеодолитом), производится фотографирование испытываемой конструкции или сооружения с двух точек. При съемке применяют стеклянные фотопластинки с большой разрешающей способностью эмульсии. Получаемые негативы рассматриваются через специальный прибор — стереокомпаратор. При рассматривании двух негативов, снятых с двух точек (стереопары), воссоздается стереомодель заснятого объекта. Стереомодель имеет определенный масштаб, зависящий от расстояния съемочной камеры до объекта съемки и фокусного расстояния камеры фототеодолита. С помощью стереокомпаратора по негативам определяют координаты интересующей точки на поверхности исследуемого объекта. Повторные стереофотосъемки и подсчеты координат тех же точек позволяют определить перемещения отдельных точек за промежуток времени, прошедший между первой и второй фотосъемкой. Метод стереофотограмметрии применяют при испытаниях строительных конструкций и сооружений динамическими нагрузками. При этом применяют фотоаппараты с синхронным затвором объектива.

 
Посмотреть оригинал
< Пред   СОДЕРЖАНИЕ   ОРИГИНАЛ   След >